Portfolio / projects.py
Niharmahesh's picture
Update projects.py
4f98275 verified
import streamlit as st
def display_projects():
st.title('My Projects')
# Define tab titles
tab_titles = [
"Resume & CV Crafter",
"Multi-Agent Job Search",
"Resume Easz",
"Job Easz",
"Bitcoin Lightning Optimization",
"National Infrastructure Monitoring",
"Stock Market Analysis",
"Twitter Trend Analysis",
"Restaurant Recommendation",
"ASL Translator",
"Squat Easy"
]
# Create tabs
tabs = st.tabs(tab_titles)
# Add content to each tab
with tabs[0]:
st.subheader("LLM-powered Resume & CV Crafter")
st.markdown("""
- **Description**: Developed AI platform combining LLaMA-3 70B and Deepseek R1 with low-temperature settings for stable, tailored resume and CV generation
- **Key Features**:
• Smart Matching Algorithm analyzing profiles against job requirements
• LaTeX-Powered Resumes with professional formatting
• Automated 4-paragraph Cover Letter Generation
• Performance Metrics evaluating match quality
- **Technical Achievements**:
• Implemented dual-agent architecture: LLaMA-3 8B for profile analysis and 70B for LaTeX generation
• Engineered JSON schema validation system for error-free template integration
• Achieved 5,000+ LinkedIn impressions with 80% reduction in creation time
- **Technologies**: Streamlit, GROQ API (LLaMA-3 70B), LaTeX, JSON Schema
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Resume_and_CV_crafter)
""")
with tabs[1]:
st.subheader("Multi-Agent Job Search System")
st.markdown("""
- **Description**: Built an AI-powered job search assistant using dual-LLaMA architecture for comprehensive job matching and analysis
- **Key Features**:
• Real-time scraping across LinkedIn, Glassdoor, Indeed, ZipRecruiter
• Advanced resume parsing and job matching
• Intelligent compatibility scoring system
- **Technical Achievements**:
• Developed batch processing pipeline handling 60+ positions/search
• Reduced job search time by 80% through accurate matching
• Implemented specialized agents for input processing, scraping, and analysis
- **Technologies**: GROQ API, jobspy, Streamlit, Pandas, LLMOps
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Multi_Agent_Job_search_and_match)
""")
with tabs[2]:
st.subheader("Resume Easz")
st.markdown("""
- **Description**: Created an AI-driven resume analysis and enhancement tool using LLaMA 3.3 model
- **Key Features**:
• Quick and in-depth resume analysis options
• Comprehensive skill gap analysis
• ATS compatibility optimization
• Multiple output formats (DOCX, HTML, TXT)
- **Technical Implementation**:
• Integrated GROQ API for advanced language processing
• Built visual diff system for resume changes
• Developed custom prompt engineering pipeline
- **Technologies**: GROQ API, Streamlit, Python, LLM
- **Reference**: [Link to Project](https://resume-easz.streamlit.app/)
""")
with tabs[3]:
st.subheader("Job Easz")
st.markdown("""
- **Description**: Engineered comprehensive job aggregation platform for data roles with advanced analytics
- **Technical Achievements**:
• Designed Airflow pipeline with exponential backoff retry (120-480s intervals)
• Optimized concurrent processing reducing runtime from 2h to 40min
• Processes ~3000 daily job listings across various data roles
- **Key Features**:
• Daily updates with comprehensive job role coverage
• Custom filtering by role and location
• Interactive dashboard for market trends
• Automated ETL pipeline
- **Technologies**: Python, Airflow, ThreadPoolExecutor, Hugging Face Datasets
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/job_easz)
""")
with tabs[4]:
st.subheader("Bitcoin Lightning Path Optimization")
st.markdown("""
- **Description**: Advanced payment routing optimization system for Bitcoin Lightning Network
- **Technical Achievements**:
• Developed ML classifiers achieving 98.77-99.10% accuracy
• Implemented tri-model consensus system for optimal routing
• Engineered ensemble models with 0.98 F1-scores
- **Implementation Details**:
• Created simulation environment for multi-channel transactions
• Optimized graph-based algorithms for payment routing
• Integrated with Lightning payment interceptor
- **Technologies**: XGBoost, Random Forest, AdaBoost, Graph Algorithms
""")
with tabs[5]:
st.subheader("National Infrastructure Monitoring")
st.markdown("""
- **Description**: Developed satellite imagery analysis system for infrastructure change detection
- **Technical Achievements**:
• Fine-tuned ViT+ResNet-101 ensemble on 40GB satellite dataset
• Achieved 85% accuracy in change detection
• Implemented 8 parallel GPU threads for enhanced performance
- **Key Features**:
• Temporal analysis with 1km resolution
• Interactive map interface with bounding box selection
• Automatic image chipping for 256x256 inputs
• Contrast adjustment optimization
- **Technologies**: Change ViT Model, Google Earth Engine, PyTorch, Computer Vision
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Data298)
""")
with tabs[6]:
st.subheader("Stock Market Analysis with OpenAI Integration")
st.markdown("""
- **Description**: Created comprehensive stock market analysis system with multilingual capabilities
- **Technical Achievements**:
• Built Spark streaming pipeline with 30% efficiency improvement
• Orchestrated Airflow Docker pipeline for Snowflake integration
• Developed bilingual GPT-3.5 chatbot for SQL query generation
- **Key Features**:
• Real-time financial metric calculations
• Custom indicator generation
• Multilingual query support
• Automated data warehousing
- **Technologies**: PySpark, Apache Airflow, Snowflake, OpenAI GPT-3.5
""")
with tabs[7]:
st.subheader("Twitter Trend Analysis")
st.markdown("""
- **Description**: Engineered comprehensive Twitter analytics platform using GCP services
- **Technical Achievements**:
• Developed GCP pipeline processing 40k tweets
• Achieved 40% efficiency improvement through custom Airflow operators
• Implemented real-time trend analysis algorithms
- **Key Features**:
• Automated ETL workflows
• Interactive Tableau dashboards
• Viral metrics tracking
• Engagement rate calculations
- **Technologies**: Google Cloud Platform, BigQuery, Apache Airflow, Tableau
""")
with tabs[8]:
st.subheader("Restaurant Recommendation System")
st.markdown("""
- **Description**: Built hybrid recommendation system combining multiple filtering approaches
- **Technical Achievements**:
• Created hybrid TF-IDF and SVD-based filtering system
• Achieved 43% improvement in recommendation relevance
• Reduced computation time by 65%
- **Key Features**:
• Location-based suggestions
• Personalized recommendations
• Interactive web interface
• Efficient matrix factorization
- **Technologies**: Collaborative Filtering, Content-Based Filtering, Flask, Folium
""")
with tabs[9]:
st.subheader("ASL Translator")
st.markdown("""
- **Description**: Developed real-time American Sign Language translation system
- **Technical Achievements**:
• Achieved 95% accuracy in real-time gesture interpretation
• Implemented adaptive hand skeleton GIF generator
• Optimized MediaPipe integration for point detection
- **Key Features**:
• Real-time hand tracking
• Visual feedback system
• Intuitive gesture recognition
• Accessible interface
- **Technologies**: MediaPipe Hand Detection, Random Forest, Hugging Face Platform
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/slr-easz)
""")
with tabs[10]:
st.subheader("Squat Easy")
st.markdown("""
- **Description**: Developed deep learning system for squat form analysis and error detection
- **Technical Achievements**:
• Engineered custom BiLSTM architecture in PyTorch
• Achieved 81% training and 75% test accuracy
• Implemented CUDA-based GPU acceleration
- **Key Features**:
• Real-time form analysis
• Six-type error classification
• Video processing pipeline
• Performance optimization
- **Technologies**: PyTorch, BiLSTM, CUDA, Object-Oriented Programming
- **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
""")