Niharmahesh commited on
Commit
b408c43
·
verified ·
1 Parent(s): 636b1bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -203
app.py CHANGED
@@ -3,7 +3,8 @@ import streamlit as st
3
  from PIL import Image
4
  from streamlit_lottie import st_lottie
5
  import json
6
- from streamlit_option_menu import option_menu # Import the option_menu
 
7
 
8
  #setting layout to wide
9
  st.set_page_config(layout="wide")
@@ -69,208 +70,6 @@ def display_work_experience():
69
  - Find my work on [Medium](https://medium.com/@nihar-palem) and [Substack](https://niharpalem.substack.com/publish/posts).
70
  """)
71
 
72
- def display_projects():
73
- st.title('My Projects')
74
-
75
- # Define tab titles
76
- tab_titles = [
77
- "Resume & CV Crafter",
78
- "Multi-Agent Job Search",
79
- "Resume Easz",
80
- "Job Easz",
81
- "Bitcoin Lightning Optimization",
82
- "National Infrastructure Monitoring",
83
- "Stock Market Analysis",
84
- "Twitter Trend Analysis",
85
- "Restaurant Recommendation",
86
- "ASL Translator",
87
- "Squat Easy"
88
- ]
89
-
90
- # Create tabs
91
- tabs = st.tabs(tab_titles)
92
-
93
- # Add content to each tab
94
- with tabs[0]:
95
- st.subheader("LLM-powered Resume & CV Crafter")
96
- st.markdown("""
97
- - **Description**: Developed AI platform combining LLaMA-3 70B and Deepseek R1 with low-temperature settings for stable, tailored resume and CV generation
98
- - **Key Features**:
99
- • Smart Matching Algorithm analyzing profiles against job requirements
100
- • LaTeX-Powered Resumes with professional formatting
101
- • Automated 4-paragraph Cover Letter Generation
102
- • Performance Metrics evaluating match quality
103
- - **Technical Achievements**:
104
- • Implemented dual-agent architecture: LLaMA-3 8B for profile analysis and 70B for LaTeX generation
105
- • Engineered JSON schema validation system for error-free template integration
106
- • Achieved 5,000+ LinkedIn impressions with 80% reduction in creation time
107
- - **Technologies**: Streamlit, GROQ API (LLaMA-3 70B), LaTeX, JSON Schema
108
- - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Resume_and_CV_crafter)
109
- """)
110
-
111
- with tabs[1]:
112
- st.subheader("Multi-Agent Job Search System")
113
- st.markdown("""
114
- - **Description**: Built an AI-powered job search assistant using dual-LLaMA architecture for comprehensive job matching and analysis
115
- - **Key Features**:
116
- • Real-time scraping across LinkedIn, Glassdoor, Indeed, ZipRecruiter
117
- • Advanced resume parsing and job matching
118
- • Intelligent compatibility scoring system
119
- - **Technical Achievements**:
120
- • Developed batch processing pipeline handling 60+ positions/search
121
- • Reduced job search time by 80% through accurate matching
122
- • Implemented specialized agents for input processing, scraping, and analysis
123
- - **Technologies**: GROQ API, jobspy, Streamlit, Pandas, LLMOps
124
- - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Multi_Agent_Job_search_and_match)
125
- """)
126
-
127
- with tabs[2]:
128
- st.subheader("Resume Easz")
129
- st.markdown("""
130
- - **Description**: Created an AI-driven resume analysis and enhancement tool using LLaMA 3.3 model
131
- - **Key Features**:
132
- • Quick and in-depth resume analysis options
133
- • Comprehensive skill gap analysis
134
- • ATS compatibility optimization
135
- • Multiple output formats (DOCX, HTML, TXT)
136
- - **Technical Implementation**:
137
- • Integrated GROQ API for advanced language processing
138
- • Built visual diff system for resume changes
139
- • Developed custom prompt engineering pipeline
140
- - **Technologies**: GROQ API, Streamlit, Python, LLM
141
- - **Reference**: [Link to Project](https://resume-easz.streamlit.app/)
142
- """)
143
-
144
- with tabs[3]:
145
- st.subheader("Job Easz")
146
- st.markdown("""
147
- - **Description**: Engineered comprehensive job aggregation platform for data roles with advanced analytics
148
- - **Technical Achievements**:
149
- • Designed Airflow pipeline with exponential backoff retry (120-480s intervals)
150
- • Optimized concurrent processing reducing runtime from 2h to 40min
151
- • Processes ~3000 daily job listings across various data roles
152
- - **Key Features**:
153
- • Daily updates with comprehensive job role coverage
154
- • Custom filtering by role and location
155
- • Interactive dashboard for market trends
156
- • Automated ETL pipeline
157
- - **Technologies**: Python, Airflow, ThreadPoolExecutor, Hugging Face Datasets
158
- - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/job_easz)
159
- """)
160
-
161
- with tabs[4]:
162
- st.subheader("Bitcoin Lightning Path Optimization")
163
- st.markdown("""
164
- - **Description**: Advanced payment routing optimization system for Bitcoin Lightning Network
165
- - **Technical Achievements**:
166
- • Developed ML classifiers achieving 98.77-99.10% accuracy
167
- • Implemented tri-model consensus system for optimal routing
168
- • Engineered ensemble models with 0.98 F1-scores
169
- - **Implementation Details**:
170
- • Created simulation environment for multi-channel transactions
171
- • Optimized graph-based algorithms for payment routing
172
- • Integrated with Lightning payment interceptor
173
- - **Technologies**: XGBoost, Random Forest, AdaBoost, Graph Algorithms
174
- """)
175
-
176
- with tabs[5]:
177
- st.subheader("National Infrastructure Monitoring")
178
- st.markdown("""
179
- - **Description**: Developed satellite imagery analysis system for infrastructure change detection
180
- - **Technical Achievements**:
181
- • Fine-tuned ViT+ResNet-101 ensemble on 40GB satellite dataset
182
- • Achieved 85% accuracy in change detection
183
- • Implemented 8 parallel GPU threads for enhanced performance
184
- - **Key Features**:
185
- • Temporal analysis with 1km resolution
186
- • Interactive map interface with bounding box selection
187
- • Automatic image chipping for 256x256 inputs
188
- • Contrast adjustment optimization
189
- - **Technologies**: Change ViT Model, Google Earth Engine, PyTorch, Computer Vision
190
- - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Data298)
191
- """)
192
-
193
- with tabs[6]:
194
- st.subheader("Stock Market Analysis with OpenAI Integration")
195
- st.markdown("""
196
- - **Description**: Created comprehensive stock market analysis system with multilingual capabilities
197
- - **Technical Achievements**:
198
- • Built Spark streaming pipeline with 30% efficiency improvement
199
- • Orchestrated Airflow Docker pipeline for Snowflake integration
200
- • Developed bilingual GPT-3.5 chatbot for SQL query generation
201
- - **Key Features**:
202
- • Real-time financial metric calculations
203
- • Custom indicator generation
204
- • Multilingual query support
205
- • Automated data warehousing
206
- - **Technologies**: PySpark, Apache Airflow, Snowflake, OpenAI GPT-3.5
207
- """)
208
-
209
- with tabs[7]:
210
- st.subheader("Twitter Trend Analysis")
211
- st.markdown("""
212
- - **Description**: Engineered comprehensive Twitter analytics platform using GCP services
213
- - **Technical Achievements**:
214
- • Developed GCP pipeline processing 40k tweets
215
- • Achieved 40% efficiency improvement through custom Airflow operators
216
- • Implemented real-time trend analysis algorithms
217
- - **Key Features**:
218
- • Automated ETL workflows
219
- • Interactive Tableau dashboards
220
- • Viral metrics tracking
221
- • Engagement rate calculations
222
- - **Technologies**: Google Cloud Platform, BigQuery, Apache Airflow, Tableau
223
- """)
224
-
225
- with tabs[8]:
226
- st.subheader("Restaurant Recommendation System")
227
- st.markdown("""
228
- - **Description**: Built hybrid recommendation system combining multiple filtering approaches
229
- - **Technical Achievements**:
230
- • Created hybrid TF-IDF and SVD-based filtering system
231
- • Achieved 43% improvement in recommendation relevance
232
- • Reduced computation time by 65%
233
- - **Key Features**:
234
- • Location-based suggestions
235
- • Personalized recommendations
236
- • Interactive web interface
237
- • Efficient matrix factorization
238
- - **Technologies**: Collaborative Filtering, Content-Based Filtering, Flask, Folium
239
- """)
240
-
241
- with tabs[9]:
242
- st.subheader("ASL Translator")
243
- st.markdown("""
244
- - **Description**: Developed real-time American Sign Language translation system
245
- - **Technical Achievements**:
246
- • Achieved 95% accuracy in real-time gesture interpretation
247
- • Implemented adaptive hand skeleton GIF generator
248
- • Optimized MediaPipe integration for point detection
249
- - **Key Features**:
250
- • Real-time hand tracking
251
- • Visual feedback system
252
- • Intuitive gesture recognition
253
- • Accessible interface
254
- - **Technologies**: MediaPipe Hand Detection, Random Forest, Hugging Face Platform
255
- - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/slr-easz)
256
- """)
257
-
258
- with tabs[10]:
259
- st.subheader("Squat Easy")
260
- st.markdown("""
261
- - **Description**: Developed deep learning system for squat form analysis and error detection
262
- - **Technical Achievements**:
263
- • Engineered custom BiLSTM architecture in PyTorch
264
- • Achieved 81% training and 75% test accuracy
265
- • Implemented CUDA-based GPU acceleration
266
- - **Key Features**:
267
- • Real-time form analysis
268
- • Six-type error classification
269
- • Video processing pipeline
270
- • Performance optimization
271
- - **Technologies**: PyTorch, BiLSTM, CUDA, Object-Oriented Programming
272
- - **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
273
- """)
274
  def display_skills():
275
  st.title('Skills')
276
 
 
3
  from PIL import Image
4
  from streamlit_lottie import st_lottie
5
  import json
6
+ from streamlit_option_menu import option_menu
7
+ from projects import display_projects
8
 
9
  #setting layout to wide
10
  st.set_page_config(layout="wide")
 
70
  - Find my work on [Medium](https://medium.com/@nihar-palem) and [Substack](https://niharpalem.substack.com/publish/posts).
71
  """)
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  def display_skills():
74
  st.title('Skills')
75