File size: 2,107 Bytes
f5f6805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

import streamlit as st
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt

# Load MNIST data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Streamlit app
st.title("MNIST Neural Network Training")

# Sidebar for parameter selection
st.sidebar.header("Model Parameters")
learning_rate = st.sidebar.slider("Learning Rate", 0.0001, 0.01, 0.001)
batch_size = st.sidebar.slider("Batch Size", 16, 128, 32)
epochs = st.sidebar.slider("Epochs", 1, 20, 5)

# Model building function
def build_model(learning_rate):
    model = Sequential([
        Flatten(input_shape=(28, 28)),
        Dense(128, activation='relu'),
        Dense(10, activation='softmax')
    ])
    model.compile(optimizer=Adam(learning_rate=learning_rate),
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    return model

# Train the model
if st.sidebar.button("Train Model"):
    model = build_model(learning_rate)
    history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

    # Plot training & validation accuracy values
    fig, ax = plt.subplots()
    ax.plot(history.history['accuracy'])
    ax.plot(history.history['val_accuracy'])
    ax.set_title('Model accuracy')
    ax.set_ylabel('Accuracy')
    ax.set_xlabel('Epoch')
    ax.legend(['Train', 'Test'], loc='upper left')
    st.pyplot(fig)

    # Plot training & validation loss values
    fig, ax = plt.subplots()
    ax.plot(history.history['loss'])
    ax.plot(history.history['val_loss'])
    ax.set_title('Model loss')
    ax.set_ylabel('Loss')
    ax.set_xlabel('Epoch')
    ax.legend(['Train', 'Test'], loc='upper left')
    st.pyplot(fig)

    # Evaluate the model
    loss, accuracy = model.evaluate(x_test, y_test, verbose=2)
    st.write(f"Test Accuracy: {accuracy:.4f}")
    st.write(f"Test Loss: {loss:.4f}")