TuNNe / nnbasics.py
Niharmahesh's picture
Upload 109 files
f5f6805 verified
raw
history blame
5.67 kB
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
import json
import os
import numpy as np
from streamlit_lottie import st_lottie
# Custom CSS to increase text size and beautify the app
# Custom CSS to increase text size, beautify the app, and highlight the final message
st.markdown("""
<style>
.big-font {
font-size:60px !important;
text-align: center;
}
.slider-label {
font-size:25px !important;
font-weight: bold;
}
.small-text {
font-size:12px !important;
}
.medium-text {
font-size:16px !important;
}
.center-text {
text-align: center;
}
.highlight {
font-family: 'Courier New', Courier, monospace;
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Load Lottie animation
def load_lottiefile(filepath: str):
with open(filepath, "r") as f:
return json.load(f)
# Load training history
def load_history(history_path):
with open(history_path, 'r') as f:
history = json.load(f)
return history
# Smooth data
def smooth_data(data, window_size):
return np.convolve(data, np.ones(window_size)/window_size, mode='valid')
# Streamlit app
st.markdown('<h1 class="big-font">TuNNe</h1>', unsafe_allow_html=True)
st.markdown('<h2 class="center-text">Tuning a Neural Network</h2>', unsafe_allow_html=True)
st.markdown('<p class="center-text">This app demonstrates how different hyperparameters affect the training of a neural network using the MNIST dataset (50% of the data).</p>', unsafe_allow_html=True)
# Load and display Lottie animation
lottie_animation = load_lottiefile("Animation - 1719728959093.json")
st_lottie(lottie_animation, height=300, key="header_animation")
# Directory containing models
model_dir = "modelllls"
model_files = [f for f in os.listdir(model_dir) if f.endswith('.json')]
# Extract available hyperparameters from model filenames
def extract_hyperparameters(model_files):
hyperparameters = []
for f in model_files:
parts = f.split('_')
lr = float(parts[2][2:])
bs = int(parts[3][2:])
epochs = int(parts[4][6:].replace('.json', ''))
hyperparameters.append((lr, bs, epochs))
return hyperparameters
hyperparameters = extract_hyperparameters(model_files)
# Get unique values for each hyperparameter
learning_rates = sorted(set(lr for lr, _, _ in hyperparameters))
# Select slider for learning rate
st.markdown('<p class="slider-label">Learning Rate</p>', unsafe_allow_html=True)
selected_lr = st.select_slider("", options=learning_rates)
# Filter batch sizes based on selected learning rate
filtered_bs = sorted(set(bs for lr, bs, _ in hyperparameters if lr == selected_lr))
st.markdown('<p class="slider-label">Batch Size</p>', unsafe_allow_html=True)
selected_bs = st.select_slider("", options=filtered_bs)
# Filter epochs based on selected learning rate and batch size
filtered_epochs = sorted(set(epochs for lr, bs, epochs in hyperparameters if lr == selected_lr and bs == selected_bs))
st.markdown('<p class="slider-label">Epochs</p>', unsafe_allow_html=True)
selected_epochs = st.select_slider("", options=filtered_epochs)
# Options for grid and smoothing
enable_grid = st.checkbox("Enable Grid Lines")
if selected_epochs > 20:
smoothing_window = st.slider("Smoothing Window (every 4 epochs)", min_value=1, max_value=5, step=1, value=1)
# Find the corresponding history file
history_filename = f"mnist_model_lr{selected_lr}_bs{selected_bs}_epochs{selected_epochs}.json"
history_path = os.path.join(model_dir, history_filename)
if os.path.exists(history_path):
history = load_history(history_path)
# Plot training & validation accuracy values
fig, ax = plt.subplots()
accuracy = history['accuracy']
val_accuracy = history['val_accuracy']
if selected_epochs > 20 and smoothing_window > 1:
accuracy = smooth_data(accuracy, smoothing_window * 4)
val_accuracy = smooth_data(val_accuracy, smoothing_window * 4)
sns.lineplot(x=range(len(accuracy)), y=accuracy, ax=ax, label='Train Accuracy')
sns.lineplot(x=range(len(val_accuracy)), y=val_accuracy, ax=ax, label='Validation Accuracy')
ax.set_title('Model Accuracy', fontsize=15)
ax.set_ylabel('Accuracy', fontsize=12)
ax.set_xlabel('Epoch', fontsize=12)
ax.legend(loc='upper left', fontsize=10)
if enable_grid:
ax.grid(True)
st.pyplot(fig)
# Plot training & validation loss values
fig, ax = plt.subplots()
loss = history['loss']
val_loss = history['val_loss']
if selected_epochs > 20 and smoothing_window > 1:
loss = smooth_data(loss, smoothing_window * 4)
val_loss = smooth_data(val_loss, smoothing_window * 4)
sns.lineplot(x=range(len(loss)), y=loss, ax=ax, label='Train Loss')
sns.lineplot(x=range(len(val_loss)), y=val_loss, ax=ax, label='Validation Loss')
ax.set_title('Model Loss', fontsize=15)
ax.set_ylabel('Loss', fontsize=12)
ax.set_xlabel('Epoch', fontsize=12)
ax.legend(loc='upper left', fontsize=10)
if enable_grid:
ax.grid(True)
st.pyplot(fig)
else:
st.error(f"History file not found: {history_path}")
# Final message
st.markdown("""
<p class="medium-text">There is no rule of thumb for hyperparameters. The combination varies, and this is just to give an idea or an interactive way of showing how each parameter affects the model training.</p>
<p class="medium-text">Though the code is generated using AI, the tuning has to be done by a human. πŸ˜‚</p>
""", unsafe_allow_html=True)