Nikhil2411's picture
1.0.1
f7cf168
import gradio as gr
from transformers import AutoModel, AutoProcessor
import torch
import cv2
# Load the model and processor from Hugging Face Hub
model_name = "OpenGVLab/InternVideo2_5_Chat_8B" # Replace with the correct model name
model = AutoModel.from_pretrained(model_name,trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name,trust_remote_code=True)
def predict(video_path):
# Load the video
video = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = video.read()
if not ret:
break
frames.append(frame)
video.release()
# Preprocess the frames
inputs = processor(frames, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Process the outputs (replace this with your actual logic)
prediction = "Hello (Example Prediction)"
return prediction
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="Prediction"),
title="Indian Sign Language Recognition",
description="Upload a video to recognize Indian Sign Language gestures.",
)
# Launch the interface
iface.launch()