NimaKL commited on
Commit
9d6cafd
Β·
1 Parent(s): 1e6658d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -10,8 +10,8 @@ with col1:
10
  st.title("Spamd: Turkish Spam Detector")
11
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
12
  with col2:
13
- text = placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=True, key="1")
14
- aButton = placeholder2.button('Analyze', disabled=True, key="1")
15
  if st.button('Load Model', disabled=False):
16
  with st.spinner('Wait for it...'):
17
  import torch
@@ -59,11 +59,10 @@ if st.button('Load Model', disabled=False):
59
  pred = 'Predicted Class: '+ prediction
60
  return pred
61
  placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=False, key="2")
62
- placeholder2.button('Analyze', disabled=False, key="2")
63
- if not flag:
64
  with col2:
65
- if text or aButton:
66
- st.header(predict(text))
67
 
68
 
69
 
 
10
  st.title("Spamd: Turkish Spam Detector")
11
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
12
  with col2:
13
+ text = placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=True, key="1")
14
+ aButton = placeholder2.button('Analyze', disabled=True, key="1")
15
  if st.button('Load Model', disabled=False):
16
  with st.spinner('Wait for it...'):
17
  import torch
 
59
  pred = 'Predicted Class: '+ prediction
60
  return pred
61
  placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=False, key="2")
62
+ placeholder2.button('Analyze', disabled=False, key="2")
63
+ if text or aButton:
64
  with col2:
65
+ st.header(predict(text))
 
66
 
67
 
68