NithyasriVllB's picture
Create app.py
a5b6369 verified
raw
history blame
1.11 kB
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
# Load the pre-trained model for question generation
generator = pipeline("text2text-generation", model="t5-small")
# Function to process image and generate questions
def generate_questions(image):
# Step 1: Extract text from the image using pytesseract
text = pytesseract.image_to_string(image)
# Step 2: Use the T5 model to generate questions from the text
prompt = f"Generate multiple-choice questions based on the following text:\n{text}"
questions = generator(prompt, max_length=150, num_return_sequences=1)
# Return the generated questions
return questions[0]['generated_text']
# Create the Gradio interface
iface = gr.Interface(
fn=generate_questions,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Textbox(label="Generated Question Paper"),
title="Image to Question Paper Generator",
description="Upload images containing text, and this tool will generate a question paper based on the text found in the images."
)
iface.launch()