Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,13 @@ from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
-
#
|
6 |
-
model_name = "google/pix2struct-
|
|
|
|
|
|
|
|
|
|
|
7 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
8 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
9 |
|
@@ -13,12 +18,12 @@ def solve_math_problem(image):
|
|
13 |
image = image.convert("RGB")
|
14 |
|
15 |
# Preprocess the image and text.
|
16 |
-
# Note: We omit
|
17 |
inputs = processor(
|
18 |
-
images=[image],
|
19 |
-
text="Solve the following math problem:",
|
20 |
return_tensors="pt",
|
21 |
-
max_patches=2048
|
22 |
)
|
23 |
|
24 |
# Generate the solution with specified generation parameters.
|
@@ -30,8 +35,7 @@ def solve_math_problem(image):
|
|
30 |
temperature=0.2
|
31 |
)
|
32 |
|
33 |
-
# Decode the
|
34 |
-
# Here, we access "input_ids" via the dictionary key.
|
35 |
problem_text = processor.decode(
|
36 |
inputs["input_ids"][0],
|
37 |
skip_special_tokens=True,
|
@@ -54,14 +58,14 @@ demo = gr.Interface(
|
|
54 |
inputs=gr.Image(
|
55 |
type="pil",
|
56 |
label="Upload Handwritten Math Problem",
|
57 |
-
image_mode="RGB",
|
58 |
source="upload"
|
59 |
),
|
60 |
outputs=gr.Textbox(label="Solution", show_copy_button=True),
|
61 |
title="Handwritten Math Problem Solver",
|
62 |
description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
|
63 |
examples=[
|
64 |
-
["example_addition.png"],
|
65 |
["example_algebra.jpg"]
|
66 |
],
|
67 |
theme="soft",
|
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
+
# Use a public model identifier; change this if you have a different one or want to use a private model.
|
6 |
+
model_name = "google/pix2struct-textcaps-base"
|
7 |
+
|
8 |
+
# If you need authentication for a private repo, pass the token as follows:
|
9 |
+
# model = Pix2StructForConditionalGeneration.from_pretrained(model_name, use_auth_token="YOUR_TOKEN")
|
10 |
+
# processor = Pix2StructProcessor.from_pretrained(model_name, use_auth_token="YOUR_TOKEN")
|
11 |
+
|
12 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
13 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
14 |
|
|
|
18 |
image = image.convert("RGB")
|
19 |
|
20 |
# Preprocess the image and text.
|
21 |
+
# Note: We omit header_text since this is not a VQA task.
|
22 |
inputs = processor(
|
23 |
+
images=[image],
|
24 |
+
text="Solve the following math problem:",
|
25 |
return_tensors="pt",
|
26 |
+
max_patches=2048
|
27 |
)
|
28 |
|
29 |
# Generate the solution with specified generation parameters.
|
|
|
35 |
temperature=0.2
|
36 |
)
|
37 |
|
38 |
+
# Decode the problem text and the generated solution.
|
|
|
39 |
problem_text = processor.decode(
|
40 |
inputs["input_ids"][0],
|
41 |
skip_special_tokens=True,
|
|
|
58 |
inputs=gr.Image(
|
59 |
type="pil",
|
60 |
label="Upload Handwritten Math Problem",
|
61 |
+
image_mode="RGB",
|
62 |
source="upload"
|
63 |
),
|
64 |
outputs=gr.Textbox(label="Solution", show_copy_button=True),
|
65 |
title="Handwritten Math Problem Solver",
|
66 |
description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
|
67 |
examples=[
|
68 |
+
["example_addition.png"],
|
69 |
["example_algebra.jpg"]
|
70 |
],
|
71 |
theme="soft",
|