NitishBorthakur commited on
Commit
9a597dd
·
verified ·
1 Parent(s): 8734366

initial commit

Browse files
Files changed (1) hide show
  1. app.py +0 -94
app.py DELETED
@@ -1,94 +0,0 @@
1
- import gradio as gr
2
- import requests
3
- from PIL import Image
4
- from io import BytesIO
5
- import numpy as np
6
- from landingai.common import decode_bitmap_rle
7
- import cv2
8
- import pydantic
9
-
10
- ENDPOINT_ID = "ba678fa4-65d1-4b87-8c85-cebd15224783"
11
- API_KEY = "land_sk_ikq7WEKGtaKI7pXIcKt2x7RoyYE6FBReqGOmKtEhjcmFbLbQsK"
12
- API_URL = f"https://predict.app.landing.ai/inference/v1/predict?endpoint_id={ENDPOINT_ID}"
13
-
14
- def predict_from_landinglens(image_path):
15
- # Load and keep original image
16
- original_img = Image.open(image_path).convert("RGB")
17
- img_array = np.array(original_img)
18
-
19
- # Get image dimensions
20
- height, width = img_array.shape[:2]
21
- total_pixels = height * width
22
-
23
- # Prepare for API
24
- buffered = BytesIO()
25
- original_img.save(buffered, format="JPEG")
26
- img_bytes = buffered.getvalue()
27
-
28
- files = {"file": (image_path, img_bytes, "image/jpeg")}
29
- headers = {"apikey": API_KEY}
30
-
31
- try:
32
- response = requests.post(API_URL, files=files, headers=headers)
33
- if response.status_code == 503:
34
- return "Service temporarily unavailable. Please try again later."
35
- response.raise_for_status()
36
- prediction = response.json()
37
-
38
- if "predictions" not in prediction or not prediction.get("predictions"):
39
- print("No 'predictions' key found or it's empty.")
40
- return "Error: No 'predictions' found."
41
-
42
- bitmaps = prediction["predictions"]["bitmaps"]
43
- masked_images = []
44
- coverage_info = []
45
-
46
- for i, (bitmap_id, bitmap_data) in enumerate(bitmaps.items()):
47
- try:
48
- # Decode mask
49
- mask = decode_bitmap_rle(bitmap_data["bitmap"])
50
- if isinstance(mask, list):
51
- mask = np.array(mask)
52
-
53
- # Reshape mask to match image dimensions
54
- mask = mask.reshape(prediction["predictions"]["imageHeight"],
55
- prediction["predictions"]["imageWidth"])
56
-
57
- # Calculate area coverage
58
- mask_area = np.sum(mask > 0)
59
- coverage_percentage = (mask_area / total_pixels) * 100
60
- label_name = bitmap_data.get("label_name", f"Mask {i}")
61
- coverage_info.append(f"{label_name}: {coverage_percentage:.2f}%")
62
-
63
- # Create colored overlay
64
- colored_mask = np.zeros_like(img_array)
65
- colored_mask[mask > 0] = [255, 0, 0] # Red overlay for mask
66
-
67
- # Combine original image with colored mask
68
- alpha = 0.5 # Transparency of the overlay
69
- combined = cv2.addWeighted(img_array, 1, colored_mask, alpha, 0)
70
-
71
- # Convert to PIL Image
72
- masked_image = Image.fromarray(combined)
73
- masked_images.append(masked_image)
74
-
75
- except Exception as e:
76
- print(f"Error processing mask {i}: {e}")
77
- continue
78
-
79
- return masked_images, "\n".join(coverage_info)
80
-
81
- except requests.exceptions.RequestException as e:
82
- print(f"API Error: {e}")
83
- return f"API Error: {e}"
84
-
85
- iface = gr.Interface(
86
- fn=predict_from_landinglens,
87
- inputs=gr.Image(type="filepath"),
88
- outputs=[
89
- gr.Gallery(format="png"),
90
- gr.Textbox(label="Area of each mask in the image")
91
- ],
92
- title="Crosswalk detection model",
93
- )
94
- iface.launch()