Spaces:
Sleeping
Sleeping
from __future__ import absolute_import | |
import numpy as np | |
import itertools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def grid_sample(input, grid, canvas = None): | |
output = F.grid_sample(input, grid) | |
if canvas is None: | |
return output | |
else: | |
input_mask = input.data.new(input.size()).fill_(1) | |
output_mask = F.grid_sample(input_mask, grid) | |
padded_output = output * output_mask + canvas * (1 - output_mask) | |
return padded_output | |
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2 | |
def compute_partial_repr(input_points, control_points): | |
N = input_points.size(0) | |
M = control_points.size(0) | |
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) | |
# original implementation, very slow | |
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance | |
pairwise_diff_square = pairwise_diff * pairwise_diff | |
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] | |
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) | |
# fix numerical error for 0 * log(0), substitute all nan with 0 | |
mask = repr_matrix != repr_matrix | |
repr_matrix.masked_fill_(mask, 0) | |
return repr_matrix | |
# # output_ctrl_pts are specified, according to our task. | |
# def build_output_control_points(num_control_points, margins): | |
# margin_x, margin_y = margins | |
# margin_x, margin_y = 0,0 | |
# num_ctrl_pts_per_side = num_control_points // 2 | |
# ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side) | |
# ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y | |
# ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y) | |
# ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
# ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
# # ctrl_pts_top = ctrl_pts_top[1:-1,:] | |
# # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:] | |
# output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
# output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr) | |
# return output_ctrl_pts | |
# output_ctrl_pts are specified, according to our task. | |
def build_output_control_points(num_control_points, margins): | |
margin_x, margin_y = margins | |
# margin_x, margin_y = 0,0 | |
num_ctrl_pts_per_side = (num_control_points-4) // 4 +2 | |
ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side) | |
ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y | |
ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
ctrl_pts_x_left = np.ones(num_ctrl_pts_per_side) * margin_x | |
ctrl_pts_x_right = np.ones(num_ctrl_pts_per_side) * (1.0-margin_x) | |
ctrl_pts_left = np.stack([ctrl_pts_x_left[1:-1], ctrl_pts_x[1:-1]], axis=1) | |
ctrl_pts_right = np.stack([ctrl_pts_x_right[1:-1], ctrl_pts_x[1:-1]], axis=1) | |
output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom, ctrl_pts_left, ctrl_pts_right], axis=0) | |
output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr) | |
return output_ctrl_pts | |
# demo: ~/test/models/test_tps_transformation.py | |
class TPSSpatialTransformer(nn.Module): | |
def __init__(self, output_image_size=None, num_control_points=None, margins=None): | |
super(TPSSpatialTransformer, self).__init__() | |
self.output_image_size = output_image_size | |
self.num_control_points = num_control_points | |
self.margins = margins | |
self.target_height, self.target_width = output_image_size | |
target_control_points = build_output_control_points(num_control_points, margins) | |
N = num_control_points | |
# N = N - 4 | |
# create padded kernel matrix | |
forward_kernel = torch.zeros(N + 3, N + 3) | |
target_control_partial_repr = compute_partial_repr(target_control_points, target_control_points) | |
forward_kernel[:N, :N].copy_(target_control_partial_repr) | |
forward_kernel[:N, -3].fill_(1) | |
forward_kernel[-3, :N].fill_(1) | |
forward_kernel[:N, -2:].copy_(target_control_points) | |
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) | |
# compute inverse matrix | |
# print(forward_kernel.shape) | |
inverse_kernel = torch.inverse(forward_kernel) | |
# create target cordinate matrix | |
HW = self.target_height * self.target_width | |
target_coordinate = list(itertools.product(range(self.target_height), range(self.target_width))) | |
target_coordinate = torch.Tensor(target_coordinate) # HW x 2 | |
Y, X = target_coordinate.split(1, dim = 1) | |
Y = Y / (self.target_height - 1) | |
X = X / (self.target_width - 1) | |
target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y) | |
target_coordinate_partial_repr = compute_partial_repr(target_coordinate, target_control_points) | |
target_coordinate_repr = torch.cat([ | |
target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate | |
], dim = 1) | |
# register precomputed matrices | |
self.register_buffer('inverse_kernel', inverse_kernel) | |
self.register_buffer('padding_matrix', torch.zeros(3, 2)) | |
self.register_buffer('target_coordinate_repr', target_coordinate_repr) | |
self.register_buffer('target_control_points', target_control_points) | |
def forward(self, input, source_control_points,direction='dewarp'): | |
if direction == 'dewarp': | |
assert source_control_points.ndimension() == 3 | |
assert source_control_points.size(1) == self.num_control_points | |
assert source_control_points.size(2) == 2 | |
batch_size = source_control_points.size(0) | |
Y = torch.cat([source_control_points, self.padding_matrix.expand(batch_size, 3, 2)], 1) | |
mapping_matrix = torch.matmul(self.inverse_kernel, Y) | |
source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix) | |
grid = source_coordinate.view(-1, self.target_height, self.target_width, 2) | |
grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1]. | |
# the input to grid_sample is normalized [-1, 1], but what we get is [0, 1] | |
grid = 2.0 * grid - 1.0 | |
output_maps = grid_sample(input, grid, canvas=None) | |
return output_maps, source_coordinate | |
# elif direction == 'warp': | |
# target_control_points = source_control_points.clone() | |
# source_control_points = (build_output_control_points(self.num_control_points, self.margins)).clone() | |
# source_control_points = source_control_points.unsqueeze(0) | |
# source_control_points = source_control_points.expand(target_control_points.size(0),self.num_control_points,2) | |
# assert source_control_points.ndimension() == 3 | |
# assert source_control_points.size(1) == self.num_control_points | |
# assert source_control_points.size(2) == 2 | |
# batch_size = source_control_points.size(0) | |
# Y = torch.cat([source_control_points.to('cuda'), self.padding_matrix.expand(batch_size, 3, 2)], 1) | |
# mapping_matrix = torch.matmul(self.inverse_kernel, Y) | |
# source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix) | |
# grid = source_coordinate.view(-1, self.target_height, self.target_width, 2) | |
# grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1]. | |
# # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1] | |
# grid = 2.0 * grid - 1.0 | |
# output_maps = grid_sample(input, grid, canvas=None) | |
# return output_maps, source_coordinate | |