File size: 2,844 Bytes
4f7080f
c8c0b44
 
a36c7d4
 
8e98aef
 
a36c7d4
 
 
 
8e98aef
a36c7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cd936
a36c7d4
 
 
 
 
 
 
 
 
 
 
 
8e98aef
a36c7d4
 
 
 
8e98aef
a36c7d4
 
e9cd936
a36c7d4
 
 
 
 
 
 
 
 
 
e9cd936
a36c7d4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
os.system("pip install -r requirements.txt")
os.system("pip freeze")
import torch  
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import gradio as gr

# Load pretrained model and tokenizer  
model_name = "salesforce/codet5-base"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

#Define function to analyze input code  
def analyze_code(input_code):                
	# Format code into strings and sentences for NLP     
	code_str = " ".join(input_code.split())        
	sentences = [s.strip() for s in code_str.split(".") if s.strip()]   
	#Extract relevant info and intent from code        
	variables = []              
	functions = []    
	logic = []       
	for sentence in sentences: 
		if "=" in sentence:           
			variables.append(sentence.split("=")[0].strip())       
		elif "(" in sentence:            
			functions.append(sentence.split("(")[0].strip())       
		else:           
			logic.append(sentence)               
	#Return info and intent in dictionary    
	return {"variables": variables, "functions": functions, "logic": logic}

# Define function to generate prompt from analyzed code  
def generate_prompt(code_analysis):       
	prompt = f"Generate code with the following: \n\n"   
	prompt += f"Variables: {', '.join(code_analysis['variables'])} \n\n"   
	prompt += f"Functions: {', '.join(code_analysis['functions'])} \n\n"   
	 prompt += f"Logic: {' '.join(code_analysis['logic'])}"  
	return prompt
	   
# Generate code from model and prompt  
def generate_code(prompt):
	generated_code = model.generate(prompt, max_length=100, num_beams=5, early_stopping=True)  
	return generated_code 

# Suggest improvements to code
def suggest_improvements(code):
	suggestions = ["Use more descriptive variable names", "Add comments to explain complex logic", "Refactor duplicated code into functions"]
	return suggestions

# Define Gradio interface 
interface = gr.Interface(fn=generate_code, inputs=["textbox"], outputs=["textbox"])

# Have a conversation about the code  
input_code = """x = 10  
y = 5   
def add(a, b):   
   return a + b
result = add(x, y)"""
code_analysis = analyze_code(input_code)        
prompt = generate_prompt(code_analysis)  
reply = f"{prompt}\n\n{generate_code(prompt)}\n\nSuggested improvements: {', '.join(suggest_improvements(input_code))}"
print(reply)

while True:
	change = input("Would you like to make any changes to the code? (Y/N) ")
	if change == "Y":
		new_code = input("Enter the updated code: ")
		code_analysis = analyze_code(new_code)       
		prompt = generate_prompt(code_analysis)  
		reply = f"{prompt}\n\n{generate_code(prompt)}\n\nSuggested improvements: {', '.join(suggest_improvements(new_code))}"   
		print(reply)
	elif change == "N":
		print("OK, conversation ended.")
		break