Spaces:
Sleeping
Sleeping
File size: 7,640 Bytes
da03ea9 2f582b2 da03ea9 2f582b2 da03ea9 2f582b2 03f6eb9 2f582b2 da03ea9 2e2a748 da03ea9 2f582b2 5db375c da03ea9 2f582b2 da03ea9 2f582b2 da03ea9 2f582b2 da03ea9 ac70fb3 da03ea9 ac70fb3 da03ea9 ac70fb3 da03ea9 9049ea4 ac70fb3 da03ea9 ac70fb3 da03ea9 5db375c da03ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import streamlit as st
import cv2
import pandas as pd
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
import nltk
import tempfile
from nltk.corpus import wordnet
import spacy
from spacy.cli import download
import base64
import numpy as np
import datetime
from streamlit_option_menu import option_menu
# Download necessary NLP models
nltk.download('wordnet')
nltk.download('omw-1.4')
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Load the pre-trained models for image captioning and summarization
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
tokenizer.pad_token = tokenizer.eos_token
# update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
summarize_pipe = pipeline("summarization", model=model_sum_name)
if 'captured_images' not in st.session_state:
st.session_state.captured_images = []
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def preprocess_query(query):
doc = nlp(query)
tokens = set()
for token in doc:
tokens.add(token.text)
tokens.add(token.lemma_)
tokens.update(get_synonyms(token.text))
return tokens
def search_captions(query, captions):
query_tokens = preprocess_query(query)
results = []
for img_str, caption, capture_time in captions:
caption_tokens = preprocess_query(caption)
if query_tokens & caption_tokens:
results.append((img_str, caption, capture_time))
return results
def add_image_to_state(image, caption, capture_time):
img_str = base64.b64encode(cv2.imencode('.jpg', image)[1]).decode()
if len(st.session_state.captured_images) < 20:
st.session_state.captured_images.append((img_str, caption, capture_time))
def page_image_captioning():
st.title("Image Captioning")
st.write("Your image captioning code here")
def page_video_captioning():
st.title("Video Captioning")
st.write("Your video captioning code here")
def page_webcam_capture():
st.title("Live Captioning with Webcam")
img_file = st.camera_input("Capture an image")
if img_file:
img = Image.open(img_file)
img_array = np.array(img)
caption = generate_caption(img)
capture_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
add_image_to_state(img_array, caption, capture_time)
st.image(img, caption=f"Caption: {caption}")
if st.button('Stop'):
st.write("Camera stopped.")
if st.session_state.captured_images:
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
st.table(df[['Capture Time', 'Caption']])
else:
st.write("No images captured.")
st.sidebar.title("Search Captions")
query = st.sidebar.text_input("Enter a word to search in captions:")
if st.sidebar.button("Search"):
results = search_captions(query, st.session_state.captured_images)
if results:
st.subheader("Search Results:")
cols = st.columns(4)
for idx, (img_str, caption, capture_time) in enumerate(results):
col = cols[idx % 4]
with col:
img_data = base64.b64decode(img_str)
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
else:
st.write("No matching captions found.")
if st.sidebar.button("Generate Report"):
if st.session_state.captured_images:
st.subheader("Captured Images and Captions:")
cols = st.columns(4)
for idx, (img_str, caption, capture_time) in enumerate(st.session_state.captured_images):
col = cols[idx % 4]
with col:
img_data = base64.b64decode(img_str)
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
df['Image'] = df['Image'].apply(lambda x: f'<img src="data:image/jpeg;base64,{x}"/>')
excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df.to_excel(excel_file.name, index=False)
st.sidebar.download_button(label="Download Captions as Excel",
data=open(excel_file.name, 'rb').read(),
file_name="camera_captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
summaries = []
for i in range(0, len(st.session_state.captured_images), 10):
batch_captions = " ".join([st.session_state.captured_images[j][1] for j in range(i, min(i+10, len(st.session_state.captured_images)))] )
summary = summarize_pipe(batch_captions)[0]['summary_text']
summaries.append((st.session_state.captured_images[i][2], summary))
df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df_summary.to_excel(summary_file.name, index=False)
st.sidebar.download_button(label="Download Summary Report",
data=open(summary_file.name, 'rb').read(),
file_name="camera_summary_report.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
def main():
st.session_state.active_page = st.session_state.get("active_page", "Image Captioning")
with st.sidebar:
selected = option_menu(
menu_title="Main Menu",
options=["Image Captioning", "Video Captioning", "Webcam Captioning"],
icons=["image", "Caret-right-square", "camera"],
menu_icon="cast",
default_index=0,
)
if selected != st.session_state.active_page:
handle_page_switch(selected)
if selected == "Image Captioning":
page_image_captioning()
elif selected == "Video Captioning":
page_video_captioning()
elif selected == "Webcam Captioning":
page_webcam_capture()
def handle_page_switch(selected_page):
st.session_state.active_page = selected_page
if __name__ == "__main__":
main()
|