3-page-app / app.py
NourFakih's picture
Update app.py
03f6eb9 verified
import streamlit as st
import cv2
import pandas as pd
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
import nltk
import tempfile
from nltk.corpus import wordnet
import spacy
from spacy.cli import download
import base64
import numpy as np
import datetime
from streamlit_option_menu import option_menu
# Download necessary NLP models
nltk.download('wordnet')
nltk.download('omw-1.4')
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Load the pre-trained models for image captioning and summarization
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
tokenizer.pad_token = tokenizer.eos_token
# update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
summarize_pipe = pipeline("summarization", model=model_sum_name)
if 'captured_images' not in st.session_state:
st.session_state.captured_images = []
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def preprocess_query(query):
doc = nlp(query)
tokens = set()
for token in doc:
tokens.add(token.text)
tokens.add(token.lemma_)
tokens.update(get_synonyms(token.text))
return tokens
def search_captions(query, captions):
query_tokens = preprocess_query(query)
results = []
for img_str, caption, capture_time in captions:
caption_tokens = preprocess_query(caption)
if query_tokens & caption_tokens:
results.append((img_str, caption, capture_time))
return results
def add_image_to_state(image, caption, capture_time):
img_str = base64.b64encode(cv2.imencode('.jpg', image)[1]).decode()
if len(st.session_state.captured_images) < 20:
st.session_state.captured_images.append((img_str, caption, capture_time))
def page_image_captioning():
st.title("Image Captioning")
st.write("Your image captioning code here")
def page_video_captioning():
st.title("Video Captioning")
st.write("Your video captioning code here")
def page_webcam_capture():
st.title("Live Captioning with Webcam")
img_file = st.camera_input("Capture an image")
if img_file:
img = Image.open(img_file)
img_array = np.array(img)
caption = generate_caption(img)
capture_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
add_image_to_state(img_array, caption, capture_time)
st.image(img, caption=f"Caption: {caption}")
if st.button('Stop'):
st.write("Camera stopped.")
if st.session_state.captured_images:
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
st.table(df[['Capture Time', 'Caption']])
else:
st.write("No images captured.")
st.sidebar.title("Search Captions")
query = st.sidebar.text_input("Enter a word to search in captions:")
if st.sidebar.button("Search"):
results = search_captions(query, st.session_state.captured_images)
if results:
st.subheader("Search Results:")
cols = st.columns(4)
for idx, (img_str, caption, capture_time) in enumerate(results):
col = cols[idx % 4]
with col:
img_data = base64.b64decode(img_str)
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
else:
st.write("No matching captions found.")
if st.sidebar.button("Generate Report"):
if st.session_state.captured_images:
st.subheader("Captured Images and Captions:")
cols = st.columns(4)
for idx, (img_str, caption, capture_time) in enumerate(st.session_state.captured_images):
col = cols[idx % 4]
with col:
img_data = base64.b64decode(img_str)
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
df['Image'] = df['Image'].apply(lambda x: f'<img src="data:image/jpeg;base64,{x}"/>')
excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df.to_excel(excel_file.name, index=False)
st.sidebar.download_button(label="Download Captions as Excel",
data=open(excel_file.name, 'rb').read(),
file_name="camera_captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
summaries = []
for i in range(0, len(st.session_state.captured_images), 10):
batch_captions = " ".join([st.session_state.captured_images[j][1] for j in range(i, min(i+10, len(st.session_state.captured_images)))] )
summary = summarize_pipe(batch_captions)[0]['summary_text']
summaries.append((st.session_state.captured_images[i][2], summary))
df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df_summary.to_excel(summary_file.name, index=False)
st.sidebar.download_button(label="Download Summary Report",
data=open(summary_file.name, 'rb').read(),
file_name="camera_summary_report.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
def main():
st.session_state.active_page = st.session_state.get("active_page", "Image Captioning")
with st.sidebar:
selected = option_menu(
menu_title="Main Menu",
options=["Image Captioning", "Video Captioning", "Webcam Captioning"],
icons=["image", "Caret-right-square", "camera"],
menu_icon="cast",
default_index=0,
)
if selected != st.session_state.active_page:
handle_page_switch(selected)
if selected == "Image Captioning":
page_image_captioning()
elif selected == "Video Captioning":
page_video_captioning()
elif selected == "Webcam Captioning":
page_webcam_capture()
def handle_page_switch(selected_page):
st.session_state.active_page = selected_page
if __name__ == "__main__":
main()