Spaces:
Sleeping
Sleeping
File size: 6,308 Bytes
ff8c120 003791f ff8c120 fa22574 ff8c120 11167d5 ff8c120 003791f ff8c120 003791f fa22574 003791f ff8c120 fa22574 ef3963e fa22574 ff8c120 11167d5 ff8c120 69c36e5 83ba2ca 69c36e5 83ba2ca ff8c120 69c36e5 ff8c120 83ba2ca ff8c120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import streamlit as st
import os
import zipfile
import tempfile
import base64
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import pandas as pd
from nltk.corpus import wordnet
import spacy
import io
from spacy.cli import download
# Download and load the spaCy model
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Download NLTK WordNet data
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-11"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def preprocess_query(query):
doc = nlp(query)
tokens = set()
for token in doc:
tokens.add(token.text.lower())
tokens.add(token.lemma_.lower())
tokens.update(get_synonyms(token.text.lower()))
return tokens
def search_captions(query, captions):
query_tokens = preprocess_query(query)
results = []
for path, caption in captions.items():
caption_tokens = preprocess_query(caption)
if query_tokens & caption_tokens:
results.append((path, caption))
return results
st.title("Image Captioning Gallery")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search images by caption:")
# Options for input strategy
input_option = st.selectbox("Select input method:", ["Folder Path", "Upload Images", "Upload ZIP"])
image_files = []
if input_option == "Folder Path":
folder_path = st.text_input("Enter the folder path containing images:")
if folder_path and os.path.isdir(folder_path):
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
elif input_option == "Upload Images":
uploaded_files = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as temp_file:
temp_file.write(uploaded_file.read())
image_files.append(temp_file.name)
elif input_option == "Upload ZIP":
uploaded_zip = st.file_uploader("Upload a ZIP file containing images", type=["zip"])
if uploaded_zip:
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_zip.read())
with zipfile.ZipFile(temp_file.name, 'r') as zip_ref:
zip_ref.extractall("/tmp/images")
image_files = [os.path.join("/tmp/images", f) for f in zip_ref.namelist() if f.lower().endswith(('png', 'jpg', 'jpeg'))]
captions = {}
if st.button("Generate Captions", key='generate_captions'):
for image_file in image_files:
try:
image = Image.open(image_file)
caption = generate_caption(image)
captions[image_file] = caption
except Exception as e:
st.error(f"Error processing {image_file}: {e}")
# Display images in a grid
st.subheader("Images and Captions:")
cols = st.columns(4)
idx = 0
for image_path, caption in captions.items():
col = cols[idx % 4]
with col:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_image = base64.b64encode(img_bytes).decode()
st.markdown(
f"""
<div style='text-align: center;'>
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
<p>{caption}</p>
<p style='font-size: small; font-style: italic;'>{image_path}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error displaying {image_path}: {e}")
idx += 1
if query:
results = search_captions(query, captions)
st.write("Search Results:")
cols = st.columns(4)
idx = 0
for image_path, caption in results:
col = cols[idx % 4]
with col:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_image = base64.b64encode(img_bytes).decode()
st.markdown(
f"""
<div style='text-align: center;'>
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
<p>{caption}</p>
<p style='font-size: small; font-style: italic;'>{image_path}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error displaying search result {image_path}: {e}")
idx += 1
# Save captions to Excel and provide a download button
df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
excel_file = io.BytesIO()
df.to_excel(excel_file, index=False)
excel_file.seek(0)
st.download_button(label="Download captions as Excel",
data=excel_file,
file_name="captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|