Spaces:
Runtime error
Runtime error
File size: 12,217 Bytes
b8d4642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import streamlit as st
import os
import cv2
import tempfile
import zipfile
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer, pipeline
import torch
import pandas as pd
from nltk.corpus import wordnet
import nltk
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datetime import datetime
import base64
import io
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
# Initialize the summarization model
summarize_pipe = pipeline("summarization", model=model_sum_name)
captured_images = []
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def search_captions(query, captions):
query_words = query.split()
query_synonyms = set(query_words)
for word in query_words:
query_synonyms.update(get_synonyms(word))
results = []
for path, caption in captions.items():
if any(word in caption.split() for word in query_synonyms):
results.append((path, caption))
return results
def image_captioning_page():
st.title("Image Gallery with Captioning and Search")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search images by caption:")
# Right side for folder path input and displaying images
option = st.selectbox("Select input method:", ["Folder Path", "Upload Images"])
if option == "Folder Path":
folder_path = st.text_input("Enter the folder path containing images:")
image_files = []
if folder_path and os.path.isdir(folder_path):
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
else:
uploaded_files = st.file_uploader("Upload images or a zip file containing images:", type=['png', 'jpg', 'jpeg', 'zip'], accept_multiple_files=True)
image_files = []
if uploaded_files:
for uploaded_file in uploaded_files:
if uploaded_file.name.endswith('.zip'):
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
zip_ref.extractall("uploaded_images")
for file in zip_ref.namelist():
if file.lower().endswith(('png', 'jpg', 'jpeg')):
image_files.append(os.path.join("uploaded_images", file))
else:
if uploaded_file.name.lower().endswith(('png', 'jpg', 'jpeg')):
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1])
temp_file.write(uploaded_file.read())
image_files.append(temp_file.name)
captions = {}
if st.button("Generate Captions"):
for image_file in image_files:
try:
image = Image.open(image_file)
caption = generate_caption(image)
if option == "Folder Path":
captions[os.path.join(folder_path, os.path.basename(image_file))] = caption
else:
if image_file.startswith("uploaded_images"):
captions[image_file.replace("uploaded_images/", "")] = caption
else:
captions[os.path.basename(image_file)] = caption
except Exception as e:
st.error(f"Error processing {image_file}: {e}")
# Display images in a 4-column grid
st.subheader("Images and Captions:")
cols = st.columns(4)
idx = 0
for image_path, caption in captions.items():
col = cols[idx % 4]
with col:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_image = base64.b64encode(img_bytes).decode()
st.markdown(
f"""
<div style='text-align: center;'>
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
<p>{caption}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error displaying {image_path}: {e}")
idx += 1
if query:
results = search_captions(query, captions)
st.write("Search Results:")
for image_path, caption in results:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
st.image(img_bytes, caption=caption, width=150)
st.write(caption)
except Exception as e:
st.error(f"Error displaying search result {image_path}: {e}")
# Save captions to Excel and provide a download button
df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
excel_file = io.BytesIO()
df.to_excel(excel_file, index=False)
excel_file.seek(0)
st.download_button(label="Download captions as Excel",
data=excel_file,
file_name="captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
def live_camera_captioning_page():
st.title("Live Captioning with Webcam")
run = st.checkbox('Run')
FRAME_WINDOW = st.image([])
if 'camera' not in st.session_state:
st.session_state.camera = cv2.VideoCapture(0)
if run:
while run:
ret, frame = st.session_state.camera.read()
if not ret:
st.write("Failed to capture image.")
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
FRAME_WINDOW.image(frame)
pil_image = Image.fromarray(frame)
caption = generate_caption(pil_image)
capture_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
captured_images.append((frame, caption, capture_time))
st.write("Caption: ", caption)
cv2.waitKey(500) # Capture an image every 0.5 seconds
if not run and 'camera' in st.session_state:
st.session_state.camera.release()
del st.session_state.camera
st.sidebar.title("Search Captions")
query = st.sidebar.text_input("Enter a word to search in captions:")
if st.sidebar.button("Search"):
results = search_captions(query, captured_images)
if results:
st.subheader("Search Results:")
cols = st.columns(4)
for idx, (image, caption, capture_time) in enumerate(results):
col = cols[idx % 4]
with col:
st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)
else:
st.write("No matching captions found.")
if st.button("Generate Report"):
if captured_images:
# Display captured images in a 4-column grid
st.subheader("Captured Images and Captions:")
cols = st.columns(4)
for idx, (image, caption, capture_time) in enumerate(captured_images):
col = cols[idx % 4]
with col:
st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)
# Save captions to Excel and provide a download button
df = pd.DataFrame(captured_images, columns=['Image', 'Caption', 'Capture Time'])
excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df.to_excel(excel_file.name, index=False)
st.download_button(label="Download Captions as Excel",
data=open(excel_file.name, 'rb').read(),
file_name="camera_captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
# Summarize captions in groups of 10
summaries = []
for i in range(0, len(captured_images), 10):
batch_captions = " ".join([captured_images[j][1] for j in range(i, min(i+10, len(captured_images)))])
summary = summarize_pipe(batch_captions)[0]['summary_text']
summaries.append((captured_images[i][2], summary)) # Use the capture time of the first image in the batch
# Save summaries to Excel and provide a download button
df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
df_summary.to_excel(summary_file.name, index=False)
st.download_button(label="Download Summary Report",
data=open(summary_file.name, 'rb').read(),
file_name="camera_summary_report.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
def video_captioning_page():
st.title("Video Captioning")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search videos by caption:")
# Right side for folder path input and displaying videos
folder_path = st.text_input("Enter the folder path containing videos:")
if folder_path and os.path.isdir(folder_path):
video_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
captions = {}
for video_file in video_files:
video_path = os.path.join(folder_path, video_file)
frames, captions_df = process_video(video_path, frame_interval=20)
if frames and not captions_df.empty:
generated_captions = ' '.join(captions_df['Caption'])
summary = summarize_pipe(generated_captions)[0]['summary_text']
captions[video_path] = summary
# Display videos in a 4-column grid
cols = st.columns(4)
for idx, (video_path, summary) in enumerate(captions.items()):
with cols[idx % 4]:
st.video(video_path, caption=summary)
if query:
results = search_captions(query, captions)
st.write("Search Results:")
for video_path, summary in results:
st.video(video_path, caption=summary)
# Save captions to CSV and provide a download button
if st.button("Generate CSV"):
df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
csv = df.to_csv(index=False)
st.download_button(label="Download captions as CSV",
data=csv,
file_name="captions.csv",
mime="text/csv")
def main():
st.sidebar.title("Navigation")
page = st.sidebar.selectbox("Select a page", ["Image Captioning", "Live Camera Captioning", "Video Captioning"])
if page == "Image Captioning":
image_captioning_page()
elif page == "Live Camera Captioning":
live_camera_captioning_page()
elif page == "Video Captioning":
video_captioning_page()
if __name__ == "__main__":
main()
|