File size: 12,217 Bytes
b8d4642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import streamlit as st
import os
import cv2
import tempfile
import zipfile
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer, pipeline
import torch
import pandas as pd
from nltk.corpus import wordnet
import nltk
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datetime import datetime
import base64
import io

nltk.download('wordnet')
nltk.download('omw-1.4')

# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
# Initialize the summarization model
summarize_pipe = pipeline("summarization", model=model_sum_name)

captured_images = []

def generate_caption(image):
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
    output_ids = model.generate(pixel_values)
    caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return caption

def get_synonyms(word):
    synonyms = set()
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            synonyms.add(lemma.name())
    return synonyms

def search_captions(query, captions):
    query_words = query.split()
    query_synonyms = set(query_words)
    for word in query_words:
        query_synonyms.update(get_synonyms(word))
    
    results = []
    for path, caption in captions.items():
        if any(word in caption.split() for word in query_synonyms):
            results.append((path, caption))
    
    return results

def image_captioning_page():
    st.title("Image Gallery with Captioning and Search")

    # Sidebar for search functionality
    with st.sidebar:
        query = st.text_input("Search images by caption:")

    # Right side for folder path input and displaying images
    option = st.selectbox("Select input method:", ["Folder Path", "Upload Images"])

    if option == "Folder Path":
        folder_path = st.text_input("Enter the folder path containing images:")
        image_files = []
        if folder_path and os.path.isdir(folder_path):
            image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
    else:
        uploaded_files = st.file_uploader("Upload images or a zip file containing images:", type=['png', 'jpg', 'jpeg', 'zip'], accept_multiple_files=True)
        image_files = []
        if uploaded_files:
            for uploaded_file in uploaded_files:
                if uploaded_file.name.endswith('.zip'):
                    with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
                        zip_ref.extractall("uploaded_images")
                        for file in zip_ref.namelist():
                            if file.lower().endswith(('png', 'jpg', 'jpeg')):
                                image_files.append(os.path.join("uploaded_images", file))
                else:
                    if uploaded_file.name.lower().endswith(('png', 'jpg', 'jpeg')):
                        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1])
                        temp_file.write(uploaded_file.read())
                        image_files.append(temp_file.name)

    captions = {}
    if st.button("Generate Captions"):
        for image_file in image_files:
            try:
                image = Image.open(image_file)
                caption = generate_caption(image)
                if option == "Folder Path":
                    captions[os.path.join(folder_path, os.path.basename(image_file))] = caption
                else:
                    if image_file.startswith("uploaded_images"):
                        captions[image_file.replace("uploaded_images/", "")] = caption
                    else:
                        captions[os.path.basename(image_file)] = caption
            except Exception as e:
                st.error(f"Error processing {image_file}: {e}")

        # Display images in a 4-column grid
        st.subheader("Images and Captions:")
        cols = st.columns(4)
        idx = 0
        for image_path, caption in captions.items():
            col = cols[idx % 4]
            with col:
                try:
                    with open(image_path, "rb") as img_file:
                        img_bytes = img_file.read()
                    encoded_image = base64.b64encode(img_bytes).decode()
                    st.markdown(
                        f"""
                        <div style='text-align: center;'>
                            <img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
                            <p>{caption}</p>
                        </div>
                        """, unsafe_allow_html=True)
                except Exception as e:
                    st.error(f"Error displaying {image_path}: {e}")
            idx += 1

        if query:
            results = search_captions(query, captions)
            st.write("Search Results:")
            for image_path, caption in results:
                try:
                    with open(image_path, "rb") as img_file:
                        img_bytes = img_file.read()
                    st.image(img_bytes, caption=caption, width=150)
                    st.write(caption)
                except Exception as e:
                    st.error(f"Error displaying search result {image_path}: {e}")

        # Save captions to Excel and provide a download button
        df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
        excel_file = io.BytesIO()
        df.to_excel(excel_file, index=False)
        excel_file.seek(0)
        st.download_button(label="Download captions as Excel",
                           data=excel_file,
                           file_name="captions.xlsx",
                           mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")

def live_camera_captioning_page():
    st.title("Live Captioning with Webcam")
    run = st.checkbox('Run')
    FRAME_WINDOW = st.image([])

    if 'camera' not in st.session_state:
        st.session_state.camera = cv2.VideoCapture(0)

    if run:
        while run:
            ret, frame = st.session_state.camera.read()
            if not ret:
                st.write("Failed to capture image.")
                break
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            FRAME_WINDOW.image(frame)
            pil_image = Image.fromarray(frame)
            caption = generate_caption(pil_image)
            capture_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            captured_images.append((frame, caption, capture_time))
            st.write("Caption: ", caption)
            cv2.waitKey(500)  # Capture an image every 0.5 seconds

    if not run and 'camera' in st.session_state:
        st.session_state.camera.release()
        del st.session_state.camera

    st.sidebar.title("Search Captions")
    query = st.sidebar.text_input("Enter a word to search in captions:")
    if st.sidebar.button("Search"):
        results = search_captions(query, captured_images)
        if results:
            st.subheader("Search Results:")
            cols = st.columns(4)
            for idx, (image, caption, capture_time) in enumerate(results):
                col = cols[idx % 4]
                with col:
                    st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)
        else:
            st.write("No matching captions found.")

    if st.button("Generate Report"):
        if captured_images:
            # Display captured images in a 4-column grid
            st.subheader("Captured Images and Captions:")
            cols = st.columns(4)
            for idx, (image, caption, capture_time) in enumerate(captured_images):
                col = cols[idx % 4]
                with col:
                    st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)

            # Save captions to Excel and provide a download button
            df = pd.DataFrame(captured_images, columns=['Image', 'Caption', 'Capture Time'])
            excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
            df.to_excel(excel_file.name, index=False)
            st.download_button(label="Download Captions as Excel",
                               data=open(excel_file.name, 'rb').read(),
                               file_name="camera_captions.xlsx",
                               mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")

            # Summarize captions in groups of 10
            summaries = []
            for i in range(0, len(captured_images), 10):
                batch_captions = " ".join([captured_images[j][1] for j in range(i, min(i+10, len(captured_images)))])
                summary = summarize_pipe(batch_captions)[0]['summary_text']
                summaries.append((captured_images[i][2], summary))  # Use the capture time of the first image in the batch

            # Save summaries to Excel and provide a download button
            df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
            summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
            df_summary.to_excel(summary_file.name, index=False)
            st.download_button(label="Download Summary Report",
                               data=open(summary_file.name, 'rb').read(),
                               file_name="camera_summary_report.xlsx",
                               mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")

def video_captioning_page():
    st.title("Video Captioning")
    
    # Sidebar for search functionality
    with st.sidebar:
        query = st.text_input("Search videos by caption:")

    # Right side for folder path input and displaying videos
    folder_path = st.text_input("Enter the folder path containing videos:")
    
    if folder_path and os.path.isdir(folder_path):
        video_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
        captions = {}

        for video_file in video_files:
            video_path = os.path.join(folder_path, video_file)
            frames, captions_df = process_video(video_path, frame_interval=20)
            
            if frames and not captions_df.empty:
                generated_captions = ' '.join(captions_df['Caption'])
                summary = summarize_pipe(generated_captions)[0]['summary_text']
                captions[video_path] = summary

        # Display videos in a 4-column grid
        cols = st.columns(4)
        for idx, (video_path, summary) in enumerate(captions.items()):
            with cols[idx % 4]:
                st.video(video_path, caption=summary)

        if query:
            results = search_captions(query, captions)
            st.write("Search Results:")
            for video_path, summary in results:
                st.video(video_path, caption=summary)

        # Save captions to CSV and provide a download button
        if st.button("Generate CSV"):
            df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
            csv = df.to_csv(index=False)
            st.download_button(label="Download captions as CSV",
                               data=csv,
                               file_name="captions.csv",
                               mime="text/csv")

def main():
    st.sidebar.title("Navigation")
    page = st.sidebar.selectbox("Select a page", ["Image Captioning", "Live Camera Captioning", "Video Captioning"])

    if page == "Image Captioning":
        image_captioning_page()
    elif page == "Live Camera Captioning":
        live_camera_captioning_page()
    elif page == "Video Captioning":
        video_captioning_page()

if __name__ == "__main__":
    main()