File size: 7,251 Bytes
434f6ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
#!/usr/bin/env python3
import os
import glob
from typing import List
from dotenv import load_dotenv
from multiprocessing import Pool
from tqdm import tqdm
from langchain_cohere import CohereEmbeddings
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
if not load_dotenv():
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
exit(1)
from constants import CHROMA_SETTINGS
import chromadb
from chromadb.api.segment import API
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1].lower()
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True)
)
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
print(f"Split into {len(documents)} chunks of text (max. {chunk_size} tokens each)")
return documents
def batch_chromadb_insertions(chroma_client: API, documents: List[Document]) -> List[Document]:
"""
Split the total documents to be inserted into batches of documents that the local chroma client can process
"""
# Get max batch size.
max_batch_size = chroma_client.max_batch_size
for i in range(0, len(documents), max_batch_size):
yield documents[i:i + max_batch_size]
def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool:
"""
Checks if vectorstore exists
"""
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
if not db.get()['documents']:
return False
return True
def main():
# Create embeddings
#embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
embeddings = CohereEmbeddings()
# Chroma client
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
if does_vectorstore_exist(persist_directory, embeddings):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
collection = db.get()
documents = process_documents([metadata['source'] for metadata in collection['metadatas']])
print(f"Creating embeddings. May take some minutes...")
for batched_chromadb_insertion in batch_chromadb_insertions(chroma_client, documents):
db.add_documents(batched_chromadb_insertion)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
documents = process_documents()
print(f"Creating embeddings. May take some minutes...")
# Create the db with the first batch of documents to insert
batched_chromadb_insertions = batch_chromadb_insertions(chroma_client, documents)
first_insertion = next(batched_chromadb_insertions)
db = Chroma.from_documents(first_insertion, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client)
# Add the rest of batches of documents
for batched_chromadb_insertion in batched_chromadb_insertions:
db.add_documents(batched_chromadb_insertion)
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()
|