File size: 32,988 Bytes
038f313
1cee504
c5a20a4
ea82e64
75bf974
 
 
ed8b532
 
038f313
db00df1
2d6eaa5
c6bdd15
75bf974
70d58c7
 
 
75bf974
 
70d58c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf974
ed8b532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
27c8b8d
ed8b532
27c8b8d
 
038f313
 
 
3a64d68
98674ca
9e12544
75bf974
9e12544
9eb0de2
ed8b532
 
 
 
038f313
0ef95ea
45b3867
2d6eaa5
0ef95ea
 
 
9e12544
75bf974
9e12544
d92e5cd
 
ed8b532
 
 
f7c4208
75bf974
9e12544
 
8eb1697
 
 
 
 
9e12544
 
ba0614b
 
901bafe
0ef95ea
 
ed8b532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
4c304f3
45b3867
4c304f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cee504
ed8b532
2d6eaa5
901bafe
5b8ad4f
27c8b8d
4c304f3
 
 
 
 
 
 
 
 
45b3867
4c304f3
45b3867
 
4c304f3
 
 
 
 
 
 
 
 
 
 
 
 
45b3867
4c304f3
45b3867
 
4c304f3
 
45b3867
4c304f3
 
 
27c8b8d
a9862a1
75bf974
 
a9862a1
3f8952c
d92e5cd
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
1cee504
 
 
 
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
ba0614b
1cee504
 
 
5b8ad4f
 
1cee504
75bf974
1cee504
2d6eaa5
23119eb
 
1cee504
 
 
 
 
 
 
23119eb
1cee504
 
23119eb
 
1cee504
 
 
 
 
0ef95ea
901bafe
a9862a1
75bf974
 
 
 
 
ed8b532
75bf974
 
 
 
70d58c7
 
 
 
 
 
 
 
 
 
 
57fd5c0
75bf974
57fd5c0
 
 
 
 
 
75bf974
57fd5c0
 
 
 
 
 
 
 
 
 
75bf974
57fd5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ba4a2
57fd5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ba4a2
57fd5c0
 
 
06cdbf8
a9862a1
ed8b532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf974
 
 
 
 
 
 
 
 
d92e5cd
75bf974
 
 
 
b0cbd1c
ed8b532
 
 
 
 
 
 
 
 
 
75bf974
45b3867
70d58c7
 
 
45b3867
70d58c7
 
75bf974
 
4c304f3
70d58c7
4c304f3
75bf974
70d58c7
4c304f3
75bf974
4c304f3
 
 
 
 
 
 
 
 
 
 
 
70d58c7
4c304f3
 
 
 
 
 
bc17fe3
4c304f3
 
 
 
 
 
75bf974
70d58c7
a82c008
70d58c7
45b3867
70d58c7
45b3867
 
4c304f3
45b3867
70d58c7
75bf974
4c304f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf974
 
 
4c304f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b532
 
a82c008
 
4c304f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b532
 
a82c008
 
4c304f3
 
 
ea82e64
ed8b532
 
 
 
 
 
 
75bf974
 
45b3867
75bf974
 
 
 
45b3867
75bf974
ed8b532
75bf974
45b3867
 
 
 
75bf974
 
ed8b532
 
 
 
 
 
 
fdab9dd
d92e5cd
 
 
ea82e64
d92e5cd
a9862a1
fdab9dd
 
ea82e64
7a4f867
ea82e64
7a4f867
 
a9862a1
9e12544
 
 
 
 
 
 
a9862a1
9e12544
 
 
 
 
 
 
a9862a1
 
 
769901b
77298b9
a9862a1
ed8b532
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import requests
from smolagents.mcp_client import MCPClient

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Function to encode image to base64
def encode_image(image_path):
    if not image_path:
        print("No image path provided")
        return None
    
    try:
        print(f"Encoding image from path: {image_path}")
        
        # If it's already a PIL Image
        if isinstance(image_path, Image.Image):
            image = image_path
        else:
            # Try to open the image file
            image = Image.open(image_path)
        
        # Convert to RGB if image has an alpha channel (RGBA)
        if image.mode == 'RGBA':
            image = image.convert('RGB')
        
        # Encode to base64
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        print("Image encoded successfully")
        return img_str
    except Exception as e:
        print(f"Error encoding image: {e}")
        return None

# Dictionary to store active MCP connections
mcp_connections = {}

def connect_to_mcp_server(server_url, server_name=None):
    """Connect to an MCP server and return available tools"""
    if not server_url:
        return None, "No server URL provided"
    
    try:
        # Create an MCP client and connect to the server
        client = MCPClient({"url": server_url})
        # Get available tools
        tools = client.get_tools()
        
        # Store the connection for later use
        name = server_name or f"Server_{len(mcp_connections)}"
        mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
        
        return name, f"Successfully connected to {name} with {len(tools)} available tools"
    except Exception as e:
        print(f"Error connecting to MCP server: {e}")
        return None, f"Error connecting to MCP server: {str(e)}"

def list_mcp_tools(server_name):
    """List available tools for a connected MCP server"""
    if server_name not in mcp_connections:
        return "Server not connected"
    
    tools = mcp_connections[server_name]["tools"]
    tool_info = []
    for tool in tools:
        tool_info.append(f"- {tool.name}: {tool.description}")
    
    if not tool_info:
        return "No tools available for this server"
    
    return "\n".join(tool_info)

def call_mcp_tool(server_name, tool_name, **kwargs):
    """Call a specific tool from an MCP server"""
    if server_name not in mcp_connections:
        return f"Server '{server_name}' not connected"
    
    client = mcp_connections[server_name]["client"]
    tools = mcp_connections[server_name]["tools"]
    
    # Find the requested tool
    tool = next((t for t in tools if t.name == tool_name), None)
    if not tool:
        return f"Tool '{tool_name}' not found on server '{server_name}'"
    
    try:
        # Call the tool with provided arguments
        result = client.call_tool(tool_name, kwargs)
        return result
    except Exception as e:
        print(f"Error calling MCP tool: {e}")
        return f"Error calling MCP tool: {str(e)}"

def analyze_message_for_tool_call(message, active_mcp_servers, client, model_to_use, system_message):
    """Analyze a message to determine if an MCP tool should be called"""
    # Skip analysis if message is empty
    if not message or not message.strip():
        return None, None
    
    # Get information about available tools
    tool_info = []
    for server_name in active_mcp_servers:
        if server_name in mcp_connections:
            server_tools = mcp_connections[server_name]["tools"]
            for tool in server_tools:
                tool_info.append({
                    "server_name": server_name,
                    "tool_name": tool.name,
                    "description": tool.description
                })
    
    if not tool_info:
        return None, None
    
    # Create a structured query for the LLM to analyze if a tool call is needed
    tools_desc = []
    for info in tool_info:
        tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
    
    tools_string = "\n".join(tools_desc)
    
    analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
Available tools:
{tools_string}

Your job is to:
1. Analyze the user's message
2. Determine if they're asking to use one of the tools
3. If yes, respond with a JSON object with the server_name, tool_name, and parameters
4. If no, respond with "NO_TOOL_NEEDED"

Example 1:
User: "Please turn this text into speech: Hello world"
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio", "parameters": {{"text": "Hello world", "speed": 1.0}}}}

Example 2:
User: "What is the capital of France?"
Response: NO_TOOL_NEEDED"""
    
    try:
        # Call the LLM to analyze the message
        response = client.chat_completion(
            model=model_to_use,
            messages=[
                {"role": "system", "content": analysis_system_prompt},
                {"role": "user", "content": message}
            ],
            temperature=0.2,  # Low temperature for more deterministic responses
            max_tokens=300
        )
        
        analysis = response.choices[0].message.content
        print(f"Tool analysis: {analysis}")
        
        if "NO_TOOL_NEEDED" in analysis:
            return None, None
        
        # Try to extract JSON from the response
        json_start = analysis.find("{")
        json_end = analysis.rfind("}") + 1
        
        if json_start < 0 or json_end <= 0:
            return None, None
            
        json_str = analysis[json_start:json_end]
        try:
            tool_call = json.loads(json_str)
            return tool_call.get("server_name"), {
                "tool_name": tool_call.get("tool_name"),
                "parameters": tool_call.get("parameters", {})
            }
        except json.JSONDecodeError:
            print(f"Failed to parse tool call JSON: {json_str}")
            return None, None
            
    except Exception as e:
        print(f"Error analyzing message for tool calls: {str(e)}")
        return None, None

def respond(
    message,
    image_files,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key,
    custom_model,    
    model_search_term,
    selected_model,
    mcp_enabled=False,
    active_mcp_servers=None,
    mcp_interaction_mode="Natural Language"
):
    print(f"Received message: {message}")
    print(f"Received {len(image_files) if image_files else 0} images")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected provider: {provider}")         
    print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
    print(f"Selected model (custom_model): {custom_model}")  
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")
    print(f"MCP enabled: {mcp_enabled}")
    print(f"Active MCP servers: {active_mcp_servers}")
    print(f"MCP interaction mode: {mcp_interaction_mode}")

    # Determine which token to use
    token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
    
    if custom_api_key.strip() != "":
        print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
    else:
        print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None
        
    # Determine which model to use
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Process MCP commands in command mode
    if mcp_enabled and message:
        if message.startswith("/mcp"):  # Always handle explicit commands
            # Handle MCP command
            command_parts = message.split(" ", 3)
            if len(command_parts) < 3:
                return "Invalid MCP command. Format: /mcp <server_name> <tool_name> [arguments]"
            
            _, server_name, tool_name = command_parts[:3]
            args_json = "{}" if len(command_parts) < 4 else command_parts[3]
            
            try:
                args_dict = json.loads(args_json)
                result = call_mcp_tool(server_name, tool_name, **args_dict)
                if isinstance(result, dict):
                    return json.dumps(result, indent=2)
                return str(result)
            except json.JSONDecodeError:
                return f"Invalid JSON arguments: {args_json}"
            except Exception as e:
                return f"Error executing MCP command: {str(e)}"
        elif mcp_interaction_mode == "Natural Language" and active_mcp_servers:
            # Use natural language processing to detect tool calls
            server_name, tool_info = analyze_message_for_tool_call(
                message, 
                active_mcp_servers, 
                client, 
                model_to_use, 
                system_message
            )
            
            if server_name and tool_info:
                try:
                    # Call the detected tool
                    print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info['parameters']}")
                    result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info['parameters'])
                    
                    # Format the response to include what was done
                    if isinstance(result, dict):
                        result_str = json.dumps(result, indent=2)
                    else:
                        result_str = str(result)
                    
                    return f"I used the {tool_info['tool_name']} tool from {server_name} with your request.\n\nResult:\n{result_str}"
                except Exception as e:
                    print(f"Error executing MCP tool via natural language: {str(e)}")
                    # Continue with normal response if tool call fails

    # Create multimodal content if images are present
    if image_files and len(image_files) > 0:
        # Process the user message to include images
        user_content = []
        
        # Add text part if there is any
        if message and message.strip():
            user_content.append({
                "type": "text",
                "text": message
            })
        
        # Add image parts
        for img in image_files:
            if img is not None:
                # Get raw image data from path
                try:
                    encoded_image = encode_image(img)
                    if encoded_image:
                        user_content.append({
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{encoded_image}"
                            }
                        })
                except Exception as e:
                    print(f"Error encoding image: {e}")
    else:
        # Text-only message
        user_content = message

    # Add information about available MCP tools to the system message if MCP is enabled
    augmented_system_message = system_message
    if mcp_enabled and active_mcp_servers:
        tool_info = []
        for server_name in active_mcp_servers:
            if server_name in mcp_connections:
                server_tools = list_mcp_tools(server_name).split("\n")
                tool_info.extend([f"{server_name}: {tool}" for tool in server_tools])
        
        if tool_info:
            mcp_tools_description = "\n".join(tool_info)
            
            if mcp_interaction_mode == "Command Mode":
                augmented_system_message += f"\n\nYou have access to the following MCP tools:\n{mcp_tools_description}\n\nTo use these tools, the user can type a command in the format: /mcp <server_name> <tool_name> <arguments_json>"
            else:
                augmented_system_message += f"\n\nYou have access to the following MCP tools:\n{mcp_tools_description}\n\nThe user can use these tools by describing what they want in natural language, and the system will automatically detect when to use a tool based on their request."
    
    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": augmented_system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            # Handle both text-only and multimodal messages in history
            if isinstance(user_part, tuple) and len(user_part) == 2:
                # This is a multimodal message with text and images
                history_content = []
                if user_part[0]:  # Text
                    history_content.append({
                        "type": "text",
                        "text": user_part[0]
                    })
                
                for img in user_part[1]:  # Images
                    if img:
                        try:
                            encoded_img = encode_image(img)
                            if encoded_img:
                                history_content.append({
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{encoded_img}"
                                    }
                                })
                        except Exception as e:
                            print(f"Error encoding history image: {e}")
                
                messages.append({"role": "user", "content": history_content})
            else:
                # Regular text message
                messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context (type: {type(user_part)})")
        
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": user_content})
    print(f"Latest user message appended (content type: {type(user_content)})")

    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        print("Received tokens: ", end="", flush=True)
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(token_text, end="", flush=True)
                        response += token_text
                        yield response
        
        print()
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Create the chatbot component
    chatbot = gr.Chatbot(
        height=600, 
        show_copy_button=True, 
        placeholder="Select a model and begin chatting. Now supports multiple inference providers, multimodal inputs, and MCP tools",
        layout="panel"
    )
    print("Chatbot interface created.")
    
    # Multimodal textbox for messages (combines text and file uploads)
    msg = gr.MultimodalTextbox(
        placeholder="Type a message or upload images...",
        show_label=False,
        container=False,
        scale=12,
        file_types=["image"],
        file_count="multiple",
        sources=["upload"]
    )
    
    # Create accordion for settings
    with gr.Accordion("Settings", open=False):
        # System message
        system_message_box = gr.Textbox(
            value="You are a helpful AI assistant that can understand images and text.", 
            placeholder="You are a helpful assistant.",
            label="System Prompt"
        )
        
        # Generation parameters
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max tokens"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )
                
            with gr.Column():
                frequency_penalty_slider = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
                
                seed_slider = gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                )
        
        # Provider selection
        providers_list = [
            "hf-inference",  # Default Hugging Face Inference
            "cerebras",      # Cerebras provider
            "together",      # Together AI
            "sambanova",     # SambaNova
            "novita",        # Novita AI
            "cohere",        # Cohere
            "fireworks-ai",  # Fireworks AI
            "hyperbolic",    # Hyperbolic
            "nebius",        # Nebius
        ]
        
        provider_radio = gr.Radio(
            choices=providers_list,
            value="hf-inference",
            label="Inference Provider",
        )
        
        # New BYOK textbox
        byok_textbox = gr.Textbox(
            value="",
            label="BYOK (Bring Your Own Key)",
            info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
            placeholder="Enter your Hugging Face API token",
            type="password"  # Hide the API key for security
        )
        
        # Custom model box
        custom_model_box = gr.Textbox(
            value="",
            label="Custom Model",
            info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
            placeholder="meta-llama/Llama-3.3-70B-Instruct"
        )
        
        # Model search
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        
        # Featured models list
        # Updated to include multimodal models
        models_list = [
            "meta-llama/Llama-3.2-11B-Vision-Instruct",
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct",
            "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2",
            "Qwen/Qwen3-235B-A22B",
            "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/Qwen2.5-3B-Instruct",
            "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct",
            "microsoft/Phi-3-mini-4k-instruct",
        ]

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.2-11B-Vision-Instruct",  # Default to a multimodal model
            interactive=True
        )
        
        gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")

    # Create accordion for MCP settings
    with gr.Accordion("MCP Settings", open=False):
        mcp_enabled_checkbox = gr.Checkbox(
            label="Enable MCP Support",
            value=False,
            info="Enable Model Context Protocol support to connect to external tools and services"
        )
        
        with gr.Row():
            mcp_server_url = gr.Textbox(
                label="MCP Server URL",
                placeholder="https://example-mcp-server.hf.space/gradio_api/mcp/sse",
                info="URL of the MCP server to connect to"
            )
            
            mcp_server_name = gr.Textbox(
                label="Server Name",
                placeholder="Optional name for this server",
                info="A friendly name to identify this server"
            )
            
            mcp_connect_button = gr.Button("Connect to MCP Server")
        
        mcp_status = gr.Textbox(
            label="MCP Connection Status",
            placeholder="No MCP servers connected",
            interactive=False
        )
        
        active_mcp_servers = gr.Dropdown(
            label="Active MCP Servers",
            choices=[],
            multiselect=True,
            info="Select which MCP servers to use in chat"
        )
        
        mcp_mode = gr.Radio(
            label="MCP Interaction Mode",
            choices=["Natural Language", "Command Mode"],
            value="Natural Language",
            info="Choose how to interact with MCP tools"
        )
        
        gr.Markdown("""
        ### MCP Interaction Modes
        
        **Natural Language Mode**: Simply describe what you want in plain English. Examples:
        ```
        Please convert the text "Hello world" to speech
        Can you read this text aloud: "Welcome to MCP integration"
        ```
        
        **Command Mode**: Use structured commands (for advanced users)
        ```
        /mcp <server_name> <tool_name> {"param1": "value1", "param2": "value2"}
        ```
        
        Example:
        ```
        /mcp kokoroTTS text_to_audio {"text": "Hello world", "speed": 1.0}
        ```
        """)

    # Chat history state
    chat_history = gr.State([])
    
    # Function to filter models
    def filter_models(search_term):
        print(f"Filtering models with search term: {search_term}")
        filtered = [m for m in models_list if search_term.lower() in m.lower()]
        print(f"Filtered models: {filtered}")
        return gr.update(choices=filtered)

    # Function to set custom model from radio
    def set_custom_model_from_radio(selected):
        print(f"Featured model selected: {selected}")
        return selected

    # Function to connect to MCP server
    def connect_mcp_server(url, name):
        server_name, status = connect_to_mcp_server(url, name)
        
        # Update the active servers dropdown
        servers = list(mcp_connections.keys())
        
        # Return the status message and updated server list
        return status, gr.update(choices=servers)

    # Function for the chat interface
    def user(user_message, history):
        # Debug logging for troubleshooting
        print(f"User message received: {user_message}")
        
        # Skip if message is empty (no text and no files)
        if not user_message or (not user_message.get("text") and not user_message.get("files")):
            print("Empty message, skipping")
            return history
        
        # Prepare multimodal message format
        text_content = user_message.get("text", "").strip()
        files = user_message.get("files", [])
        
        print(f"Text content: {text_content}")
        print(f"Files: {files}")
        
        # If both text and files are empty, skip
        if not text_content and not files:
            print("No content to display")
            return history
        
        # Add message with images to history
        if files and len(files) > 0:
            # Add text message first if it exists
            if text_content:
                # Add a separate text message
                print(f"Adding text message: {text_content}")
                history.append([text_content, None])
            
            # Then add each image file separately
            for file_path in files:
                if file_path and isinstance(file_path, str):
                    print(f"Adding image: {file_path}")
                    # Add image as a separate message with no text
                    history.append([f"![Image]({file_path})", None])
            
            return history
        else:
            # For text-only messages
            print(f"Adding text-only message: {text_content}")
            history.append([text_content, None])
            return history
    
    # Define bot response function
    def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model, mcp_enabled, selected_servers, mcp_interaction_mode):
        # Check if history is valid
        if not history or len(history) == 0:
            print("No history to process")
            return history
        
        # Get the most recent message and detect if it's an image
        user_message = history[-1][0]
        print(f"Processing user message: {user_message}")
        
        is_image = False
        image_path = None
        text_content = user_message
        
        # Check if this is an image message (marked with ![Image])
        if isinstance(user_message, str) and user_message.startswith("![Image]("):
            is_image = True
            # Extract image path from markdown format ![Image](path)
            image_path = user_message.replace("![Image](", "").replace(")", "")
            print(f"Image detected: {image_path}")
            text_content = ""  # No text for image-only messages
        
        # Look back for text context if this is an image
        text_context = ""
        if is_image and len(history) > 1:
            # Use the previous message as context if it's text
            prev_message = history[-2][0]
            if isinstance(prev_message, str) and not prev_message.startswith("![Image]("):
                text_context = prev_message
                print(f"Using text context from previous message: {text_context}")
        
        # Process message through respond function
        history[-1][1] = ""
        
        # Use either the image or text for the API
        if is_image:
            # For image messages
            for response in respond(
                text_context,           # Text context from previous message if any
                [image_path],           # Current image
                history[:-1],           # Previous history
                system_msg,
                max_tokens,
                temperature,
                top_p,
                freq_penalty,
                seed,
                provider,
                api_key,
                custom_model,
                search_term,
                selected_model,
                mcp_enabled,
                selected_servers,
                mcp_interaction_mode
            ):
                history[-1][1] = response
                yield history
        else:
            # For text-only messages
            for response in respond(
                text_content,           # Text message
                None,                   # No image
                history[:-1],           # Previous history
                system_msg,
                max_tokens,
                temperature,
                top_p,
                freq_penalty,
                seed,
                provider,
                api_key,
                custom_model,
                search_term,
                selected_model,
                mcp_enabled,
                selected_servers,
                mcp_interaction_mode
            ):
                history[-1][1] = response
                yield history

    # Update function for provider validation based on BYOK
    def validate_provider(api_key, provider):
        if not api_key.strip() and provider != "hf-inference":
            return gr.update(value="hf-inference")
        return gr.update(value=provider)

    # Event handlers
    msg.submit(
        user,
        [msg, chatbot],
        [chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
         frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, 
         model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
        [chatbot]
    ).then(
        lambda: {"text": "", "files": []},  # Clear inputs after submission
        None,
        [msg]
    )
    
    # Connect MCP connect button
    mcp_connect_button.click(
        connect_mcp_server,
        [mcp_server_url, mcp_server_name],
        [mcp_status, active_mcp_servers]
    )
    
    # Connect the model filter to update the radio choices
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    print("Model search box change event linked.")

    # Connect the featured model radio to update the custom model box
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    print("Featured model radio button change event linked.")
    
    # Connect the BYOK textbox to validate provider selection
    byok_textbox.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("BYOK textbox change event linked.")

    # Also validate provider when the radio changes to ensure consistency
    provider_radio.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("Provider radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True, mcp_server=False)  # Not launching as MCP server as we're the client