Nymbo's picture
Update app.py
cb919f0 verified
raw
history blame
19.2 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import atexit
from smolagents import ToolCollection, CodeAgent
from smolagents.mcp_client import MCPClient as SmolMCPClient
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
mcp_tools_collection = ToolCollection(tools=[])
mcp_client_instances = []
DEFAULT_MCP_SERVERS = [
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
]
def load_mcp_tools(server_configs_list):
global mcp_tools_collection, mcp_client_instances
# No explicit close for SmolMCPClient instances as it's not available directly
# Rely on script termination or GC for now.
# If you were using ToolCollection per server: tc.close() would be the way.
print(f"Clearing {len(mcp_client_instances)} previous MCP client instance references.")
mcp_client_instances = [] # Clear references; old objects will be GC'd if not referenced elsewhere
all_discovered_tools = []
if not server_configs_list:
print("No MCP server configurations provided. Clearing MCP tools.")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
return
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
for config in server_configs_list:
server_name = config.get('name', config.get('url', 'Unknown Server'))
try:
if config.get("type") == "sse":
sse_url = config["url"]
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
mcp_client_instances.append(smol_mcp_client)
discovered_tools_from_server = smol_mcp_client.get_tools()
if discovered_tools_from_server:
all_discovered_tools.extend(list(discovered_tools_from_server))
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
else:
print(f"No tools discovered from {server_name}.")
else:
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
except Exception as e:
print(f"Error loading MCP tools from {server_name}: {e}")
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
for tool in mcp_tools_collection.tools:
print(f" - {tool.name}: {tool.description[:100]}...")
else:
print("No MCP tools were loaded, or an error occurred.")
def cleanup_mcp_client_instances_on_exit():
global mcp_client_instances
print("Attempting to clear MCP client instance references on application exit...")
# No explicit close called here as per previous fix
mcp_client_instances = []
print("MCP client instance reference cleanup finished.")
atexit.register(cleanup_mcp_client_instances_on_exit)
def encode_image(image_path):
if not image_path: return None
try:
image = Image.open(image_path) if not isinstance(image_path, Image.Image) else image_path
if image.mode == 'RGBA': image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
print(f"Error encoding image {image_path}: {e}")
return None
def respond(
message_input_text,
image_files_list,
history: list[tuple[str, str]], # history will be list of (user_str_display, assistant_str_display)
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
global mcp_tools_collection
print(f"Respond: Text='{message_input_text}', Images={len(image_files_list) if image_files_list else 0}")
token_to_use = custom_api_key if custom_api_key.strip() else ACCESS_TOKEN
hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
if seed == -1: seed = None
current_user_content_parts = []
if message_input_text and message_input_text.strip():
current_user_content_parts.append({"type": "text", "text": message_input_text.strip()})
if image_files_list:
for img_path in image_files_list:
encoded_img = encode_image(img_path)
if encoded_img:
current_user_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
if not current_user_content_parts:
for item in history: yield item # Should not happen if handle_submit filters empty
return
llm_messages = [{"role": "system", "content": system_message}]
for hist_user_str, hist_assistant in history: # hist_user_str is display string
# For LLM context, we only care about the text part of history if it was multimodal.
# Current image handling is only for the *current* turn.
# If you need to re-process history for multimodal context for LLM, this part needs more logic.
# For now, assuming hist_user_str is sufficient as text context from past turns.
if hist_user_str:
llm_messages.append({"role": "user", "content": hist_user_str})
if hist_assistant:
llm_messages.append({"role": "assistant", "content": hist_assistant})
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else (current_user_content_parts[0] if current_user_content_parts else "")})
# FIX for Issue 1: 'NoneType' object has no attribute 'strip'
model_to_use = (custom_model.strip() if custom_model else "") or selected_model
print(f"Model selected for inference: {model_to_use}")
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
if active_mcp_tools:
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
class HFClientWrapperForAgent:
def __init__(self, hf_client, model_id, outer_scope_params):
self.client = hf_client
self.model_id = model_id
self.params = outer_scope_params
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
api_params = {
"model": self.model_id, "messages": agent_llm_messages, "stream": False,
"max_tokens": self.params['max_tokens'], "temperature": self.params['temperature'],
"top_p": self.params['top_p'], "frequency_penalty": self.params['frequency_penalty'],
}
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
if tools: api_params["tools"] = tools
if tool_choice: api_params["tool_choice"] = tool_choice
print(f"Agent's HFClientWrapper calling LLM: {self.model_id} with params: {api_params}")
completion = self.client.chat_completion(**api_params)
# FIX for Issue 2 (Potential): Ensure content is not None for text responses
if completion.choices and completion.choices[0].message and \
completion.choices[0].message.content is None and \
(not completion.choices[0].message.tool_calls or not completion.choices[0].message.tool_calls):
print("Warning (HFClientWrapperForAgent): Model returned None content. Setting to empty string.")
completion.choices[0].message.content = ""
return completion
outer_scope_llm_params = {
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
"frequency_penalty": frequency_penalty, "seed": seed
}
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter, messages_constructor=lambda: llm_messages[:-1].copy()) # Prime with history
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
if not current_query_for_agent and image_files_list:
current_query_for_agent = "Process the provided image(s) or follow related instructions."
elif not current_query_for_agent and not image_files_list:
current_query_for_agent = "..." # Should be caught by earlier check
print(f"Query for CodeAgent.run: '{current_query_for_agent}' with {len(llm_messages)-1} history messages for priming.")
try:
agent_final_text_response = agent.run(current_query_for_agent)
yield agent_final_text_response
print("Completed response generation via CodeAgent.")
except Exception as e:
print(f"Error during CodeAgent execution: {e}") # This will now print the actual underlying error
yield f"Error using tools: {str(e)}" # The str(e) might be the user-facing error
return
else:
print("No MCP tools active. Proceeding with direct LLM call (streaming).")
response_stream_content = ""
try:
stream = hf_inference_client.chat_completion(
model=model_to_use, messages=llm_messages, stream=True,
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
frequency_penalty=frequency_penalty, seed=seed
)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
token_text = delta.content
response_stream_content += token_text
yield response_stream_content
print("\nCompleted streaming response generation.")
except Exception as e:
print(f"Error during direct LLM inference: {e}")
yield response_stream_content + f"\nError: {str(e)}"
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# UserWarning for type='tuples' is known. Consider changing to type='messages' later for robustness.
chatbot = gr.Chatbot(
label="Serverless TextGen Hub", height=600, show_copy_button=True,
placeholder="Select a model, (optionally) load MCP Tools, and begin chatting.",
layout="panel", bubble_full_width=False
)
msg_input_box = gr.MultimodalTextbox(
placeholder="Type a message or upload images...", show_label=False,
container=False, scale=12, file_types=["image"],
file_count="multiple", sources=["upload"]
)
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
with gr.Row():
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
with gr.Row():
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(label="BYOK (Hugging Face API Key)", type="password", placeholder="Enter token if not using 'hf-inference'")
custom_model_box = gr.Textbox(label="Custom Model ID", placeholder="org/model-name (overrides selection below)")
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...")
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
with gr.Accordion("MCP Client Settings (Connect to External Tools)", open=False):
gr.Markdown("Configure connections to MCP Servers to allow the LLM to use external tools. The LLM will decide when to use these tools based on your prompts.")
mcp_server_config_input = gr.Textbox(
label="MCP Server Configurations (JSON Array)",
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
lines=3, placeholder='Enter a JSON list of server configurations here.',
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2)
)
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
def handle_load_mcp_tools_click(config_str_from_ui):
if not config_str_from_ui:
load_mcp_tools([])
return "MCP tool loading attempted with empty config. Tools cleared."
try:
parsed_configs = json.loads(config_str_from_ui)
if not isinstance(parsed_configs, list): return "Error: MCP configuration must be a valid JSON list."
load_mcp_tools(parsed_configs)
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
else: return "No MCP tools loaded, or an error occurred. Check console for details."
except json.JSONDecodeError: return "Error: Invalid JSON format in MCP server configurations."
except Exception as e:
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
return f"Error loading MCP tools: {str(e)}. Check console."
load_mcp_tools_btn.click(handle_load_mcp_tools_click, inputs=[mcp_server_config_input], outputs=mcp_load_status_display)
def filter_models(search_term):
return gr.update(choices=[m for m in models_list if search_term.lower() in m.lower()])
def set_custom_model_from_radio(selected):
return selected
def handle_submit(msg_content_dict, current_chat_history):
text = msg_content_dict.get("text", "").strip()
files = msg_content_dict.get("files", []) # list of file paths
if not text and not files: # Skip if both are empty
print("Skipping empty submission from multimodal textbox.")
# Yield current history to prevent Gradio from complaining about no output
yield current_chat_history, {"text": "", "files": []} # Clear input
return
# FIX for Issue 4: Pydantic FileMessage error by ensuring user part of history is a string
user_display_parts = []
if text:
user_display_parts.append(text)
if files:
for f_path in files:
base_name = os.path.basename(f_path) if f_path else "file"
f_path_str = f_path if f_path else ""
user_display_parts.append(f"\n![{base_name}]({f_path_str})")
user_display_message_for_chatbot = " ".join(user_display_parts).strip()
current_chat_history.append([user_display_message_for_chatbot, None])
# Prepare history for respond function (ensure user part is string)
history_for_respond = []
for user_h, assistant_h in current_chat_history[:-1]: # History before current turn
history_for_respond.append((str(user_h) if user_h is not None else "", assistant_h))
assistant_response_accumulator = ""
for streamed_chunk in respond(
text, files,
history_for_respond,
system_message_box.value, max_tokens_slider.value, temperature_slider.value,
top_p_slider.value, frequency_penalty_slider.value, seed_slider.value,
provider_radio.value, byok_textbox.value, custom_model_box.value,
model_search_box.value, featured_model_radio.value
):
assistant_response_accumulator = streamed_chunk
current_chat_history[-1][1] = assistant_response_accumulator
yield current_chat_history, {"text": "", "files": []}
msg_input_box.submit(
handle_submit,
[msg_input_box, chatbot],
[chatbot, msg_input_box]
)
model_search_box.change(filter_models, model_search_box, featured_model_radio)
featured_model_radio.change(set_custom_model_from_radio, featured_model_radio, custom_model_box)
byok_textbox.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
provider_radio.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
load_mcp_tools(DEFAULT_MCP_SERVERS) # Load defaults on startup
print(f"Initial MCP tools loaded: {len(mcp_tools_collection.tools) if mcp_tools_collection else 0} tools.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the Serverless TextGen Hub demo application.")
demo.launch(show_api=False)