Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,13 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
10 |
print("Access token loaded.")
|
11 |
|
@@ -17,21 +23,16 @@ def encode_image(image_path):
|
|
17 |
|
18 |
try:
|
19 |
print(f"Encoding image from path: {image_path}")
|
20 |
-
|
21 |
-
# If it's already a PIL Image
|
22 |
if isinstance(image_path, Image.Image):
|
23 |
image = image_path
|
24 |
else:
|
25 |
-
# Try to open the image file
|
26 |
image = Image.open(image_path)
|
27 |
|
28 |
-
# Convert to RGB if image has an alpha channel (RGBA)
|
29 |
if image.mode == 'RGBA':
|
30 |
image = image.convert('RGB')
|
31 |
|
32 |
-
# Encode to base64
|
33 |
buffered = io.BytesIO()
|
34 |
-
image.save(buffered, format="JPEG")
|
35 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
36 |
print("Image encoded successfully")
|
37 |
return img_str
|
@@ -39,9 +40,23 @@ def encode_image(image_path):
|
|
39 |
print(f"Error encoding image: {e}")
|
40 |
return None
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def respond(
|
43 |
message,
|
44 |
-
image_files,
|
45 |
history: list[tuple[str, str]],
|
46 |
system_message,
|
47 |
max_tokens,
|
@@ -52,33 +67,11 @@ def respond(
|
|
52 |
provider,
|
53 |
custom_api_key,
|
54 |
custom_model,
|
55 |
-
model_search_term,
|
56 |
-
selected_model
|
57 |
):
|
58 |
-
"""
|
59 |
-
Core function to stream responses from a language model.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
message (str | list): The user's message, can be text or multimodal content.
|
63 |
-
image_files (list[str]): List of paths to image files for the current turn.
|
64 |
-
history (list[tuple[str, str]]): Conversation history.
|
65 |
-
system_message (str): System prompt for the model.
|
66 |
-
max_tokens (int): Maximum tokens for the response.
|
67 |
-
temperature (float): Sampling temperature.
|
68 |
-
top_p (float): Top-p (nucleus) sampling.
|
69 |
-
frequency_penalty (float): Frequency penalty.
|
70 |
-
seed (int): Random seed (-1 for random).
|
71 |
-
provider (str): Inference provider.
|
72 |
-
custom_api_key (str): Custom API key.
|
73 |
-
custom_model (str): Custom model ID.
|
74 |
-
model_search_term (str): Term for searching models (UI related).
|
75 |
-
selected_model (str): Model selected from UI list.
|
76 |
-
|
77 |
-
Yields:
|
78 |
-
str: The cumulative response from the model.
|
79 |
-
"""
|
80 |
print(f"Received message: {message}")
|
81 |
-
print(f"Received {len(image_files) if image_files else 0} images
|
82 |
print(f"History: {history}")
|
83 |
print(f"System message: {system_message}")
|
84 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
@@ -89,7 +82,6 @@ def respond(
|
|
89 |
print(f"Model search term: {model_search_term}")
|
90 |
print(f"Selected model from radio: {selected_model}")
|
91 |
|
92 |
-
# Determine which token to use
|
93 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
94 |
|
95 |
if custom_api_key.strip() != "":
|
@@ -97,91 +89,73 @@ def respond(
|
|
97 |
else:
|
98 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
99 |
|
100 |
-
# Initialize the Inference Client with the provider and appropriate token
|
101 |
client = InferenceClient(token=token_to_use, provider=provider)
|
102 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
103 |
|
104 |
-
# Convert seed to None if -1 (meaning random)
|
105 |
if seed == -1:
|
106 |
seed = None
|
107 |
|
108 |
-
# Create multimodal content if images are present for the current message
|
109 |
-
# The 'message' parameter to 'respond' is now the text part of the current turn
|
110 |
-
# 'image_files' parameter to 'respond' now holds image paths for the current turn
|
111 |
-
current_turn_content = []
|
112 |
-
if message and isinstance(message, str) and message.strip():
|
113 |
-
current_turn_content.append({
|
114 |
-
"type": "text",
|
115 |
-
"text": message
|
116 |
-
})
|
117 |
-
|
118 |
if image_files and len(image_files) > 0:
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
-
encoded_image = encode_image(
|
123 |
if encoded_image:
|
124 |
-
|
125 |
"type": "image_url",
|
126 |
-
"image_url": {
|
127 |
-
"url": f"data:image/jpeg;base64,{encoded_image}"
|
128 |
-
}
|
129 |
})
|
130 |
except Exception as e:
|
131 |
-
print(f"Error encoding image
|
132 |
-
|
133 |
-
# If current_turn_content is empty (e.g. only empty text message), use the raw message
|
134 |
-
if not current_turn_content and isinstance(message, str):
|
135 |
-
final_user_content_for_api = message
|
136 |
-
elif not current_turn_content and not isinstance(message, str): # case where message might be complex type but empty
|
137 |
-
final_user_content_for_api = "" # or handle as error
|
138 |
else:
|
139 |
-
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
messages_for_api = [{"role": "system", "content": system_message}]
|
144 |
print("Initial messages array constructed.")
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
if
|
168 |
-
|
169 |
-
print(f"Added assistant message to
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
print(f"Latest user message appended to API context (content type: {type(final_user_content_for_api)})")
|
174 |
|
175 |
-
|
176 |
-
# Determine which model to use, prioritizing custom_model if provided
|
177 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
178 |
print(f"Model selected for inference: {model_to_use}")
|
179 |
|
180 |
-
|
181 |
-
response_text = ""
|
182 |
print(f"Sending request to {provider} provider.")
|
183 |
|
184 |
-
# Prepare parameters for the chat completion request
|
185 |
parameters = {
|
186 |
"max_tokens": max_tokens,
|
187 |
"temperature": temperature,
|
@@ -192,47 +166,67 @@ def respond(
|
|
192 |
if seed is not None:
|
193 |
parameters["seed"] = seed
|
194 |
|
195 |
-
# Use the InferenceClient for making the request
|
196 |
try:
|
197 |
-
# Create a generator for the streaming response
|
198 |
stream = client.chat_completion(
|
199 |
model=model_to_use,
|
200 |
-
messages=
|
201 |
stream=True,
|
202 |
**parameters
|
203 |
)
|
204 |
|
205 |
print("Received tokens: ", end="", flush=True)
|
206 |
|
207 |
-
# Process the streaming response
|
208 |
for chunk in stream:
|
209 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
210 |
-
# Extract the content from the response
|
211 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
212 |
-
|
213 |
-
if
|
214 |
-
print(
|
215 |
-
|
216 |
-
yield
|
217 |
|
218 |
print()
|
219 |
except Exception as e:
|
220 |
print(f"Error during inference: {e}")
|
221 |
-
|
222 |
-
yield
|
223 |
|
224 |
print("Completed response generation.")
|
225 |
|
226 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def validate_provider(api_key, provider):
|
228 |
if not api_key.strip() and provider != "hf-inference":
|
229 |
return gr.update(value="hf-inference")
|
230 |
return gr.update(value=provider)
|
231 |
|
232 |
-
#
|
233 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme")
|
234 |
-
# Create the chatbot component
|
235 |
-
chatbot = gr.Chatbot(
|
236 |
height=600,
|
237 |
show_copy_button=True,
|
238 |
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
@@ -240,7 +234,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
240 |
)
|
241 |
print("Chatbot interface created.")
|
242 |
|
243 |
-
# Multimodal textbox for messages (combines text and file uploads)
|
244 |
msg = gr.MultimodalTextbox(
|
245 |
placeholder="Type a message or upload images...",
|
246 |
show_label=False,
|
@@ -250,335 +243,167 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
250 |
file_count="multiple",
|
251 |
sources=["upload"]
|
252 |
)
|
253 |
-
|
254 |
-
#
|
|
|
|
|
|
|
|
|
255 |
with gr.Accordion("Settings", open=False):
|
256 |
-
# System message
|
257 |
system_message_box = gr.Textbox(
|
258 |
value="You are a helpful AI assistant that can understand images and text.",
|
259 |
placeholder="You are a helpful assistant.",
|
260 |
label="System Prompt"
|
261 |
)
|
262 |
|
263 |
-
# Generation parameters
|
264 |
with gr.Row():
|
265 |
with gr.Column():
|
266 |
-
max_tokens_slider = gr.Slider(
|
267 |
-
|
268 |
-
|
269 |
-
value=512,
|
270 |
-
step=1,
|
271 |
-
label="Max tokens"
|
272 |
-
)
|
273 |
-
|
274 |
-
temperature_slider = gr.Slider(
|
275 |
-
minimum=0.1,
|
276 |
-
maximum=4.0,
|
277 |
-
value=0.7,
|
278 |
-
step=0.1,
|
279 |
-
label="Temperature"
|
280 |
-
)
|
281 |
-
|
282 |
-
top_p_slider = gr.Slider(
|
283 |
-
minimum=0.1,
|
284 |
-
maximum=1.0,
|
285 |
-
value=0.95,
|
286 |
-
step=0.05,
|
287 |
-
label="Top-P"
|
288 |
-
)
|
289 |
-
|
290 |
with gr.Column():
|
291 |
-
frequency_penalty_slider = gr.Slider(
|
292 |
-
|
293 |
-
maximum=2.0,
|
294 |
-
value=0.0,
|
295 |
-
step=0.1,
|
296 |
-
label="Frequency Penalty"
|
297 |
-
)
|
298 |
-
|
299 |
-
seed_slider = gr.Slider(
|
300 |
-
minimum=-1,
|
301 |
-
maximum=65535,
|
302 |
-
value=-1,
|
303 |
-
step=1,
|
304 |
-
label="Seed (-1 for random)"
|
305 |
-
)
|
306 |
|
307 |
-
# Provider selection
|
308 |
providers_list = [
|
309 |
-
"hf-inference", "cerebras", "together", "sambanova",
|
310 |
-
"novita", "cohere", "fireworks-ai", "hyperbolic", "nebius",
|
311 |
]
|
312 |
|
313 |
-
provider_radio = gr.Radio(
|
314 |
-
|
315 |
-
)
|
316 |
-
|
317 |
-
byok_textbox = gr.Textbox(
|
318 |
-
value="", label="BYOK (Bring Your Own Key)",
|
319 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
320 |
-
placeholder="Enter your Hugging Face API token", type="password"
|
321 |
-
)
|
322 |
-
|
323 |
-
custom_model_box = gr.Textbox(
|
324 |
-
value="", label="Custom Model",
|
325 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
326 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
327 |
-
)
|
328 |
-
|
329 |
-
model_search_box = gr.Textbox(
|
330 |
-
label="Filter Models", placeholder="Search for a featured model...", lines=1
|
331 |
-
)
|
332 |
|
333 |
models_list = [
|
334 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
|
335 |
-
"meta-llama/Llama-3.
|
336 |
-
"meta-llama/Llama-3.
|
337 |
-
"
|
338 |
-
"
|
339 |
-
"
|
340 |
-
"
|
341 |
-
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
|
342 |
-
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
|
343 |
-
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
344 |
]
|
345 |
|
346 |
-
featured_model_radio = gr.Radio(
|
347 |
-
label="Select a model below", choices=models_list,
|
348 |
-
value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True
|
349 |
-
)
|
350 |
-
|
351 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
352 |
|
353 |
-
|
354 |
-
with gr.Accordion("MCP Support (for AI Tool Use)", open=False):
|
355 |
-
gr.Markdown("""
|
356 |
-
### MCP (Model Context Protocol) Enabled
|
357 |
-
|
358 |
-
This application's text and image generation capability can be used as a tool by MCP-compatible AI models
|
359 |
-
(e.g., certain versions of Claude, Cursor, or custom MCP clients like Tiny Agents).
|
360 |
-
|
361 |
-
The primary interaction function (`bot`) is exposed as an MCP tool.
|
362 |
-
Provide the conversation history and other parameters as arguments to the tool.
|
363 |
-
For multimodal input, ensure the history correctly references image data that the server can access
|
364 |
-
(Gradio's MCP layer may handle base64 to file conversion if the tool schema indicates file inputs).
|
365 |
-
|
366 |
-
**MCP Server URL:**
|
367 |
-
`https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse`
|
368 |
-
*(Replace `YOUR_SPACE_NAME` with your Hugging Face username or organization if this is a user space,
|
369 |
-
or the full space name if different. You can find this URL in your browser once the Space is running.)*
|
370 |
-
|
371 |
-
**Example MCP Client Configuration (`mcp.json` style):**
|
372 |
-
```json
|
373 |
-
{
|
374 |
-
"servers": [
|
375 |
-
{
|
376 |
-
"name": "ServerlessTextGenHubTool",
|
377 |
-
"transport": {
|
378 |
-
"type": "sse",
|
379 |
-
"url": "https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse"
|
380 |
-
}
|
381 |
-
}
|
382 |
-
]
|
383 |
-
}
|
384 |
-
```
|
385 |
-
**Note on Tool Schema:** The exact schema of the MCP tool will be determined by Gradio based on the `bot` function's
|
386 |
-
signature (including type hints) and the Gradio components it interacts with.
|
387 |
-
Refer to the `/gradio_api/mcp/schema` endpoint of your running application for the precise tool definition.
|
388 |
-
For image inputs via MCP, clients should ideally send image URLs or base64 encoded data if the tool's schema supports file types.
|
389 |
-
Gradio's MCP layer attempts to handle file data conversions.
|
390 |
-
""")
|
391 |
-
|
392 |
-
# Chat history state
|
393 |
-
chat_history = gr.State([]) # Not directly used, chatbot component handles its state internally
|
394 |
|
395 |
-
|
396 |
-
def filter_models(search_term: str):
|
397 |
print(f"Filtering models with search term: {search_term}")
|
398 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
399 |
print(f"Filtered models: {filtered}")
|
400 |
-
return gr.update(choices=filtered
|
401 |
|
402 |
-
|
403 |
-
def set_custom_model_from_radio(selected: str):
|
404 |
print(f"Featured model selected: {selected}")
|
405 |
-
# This function now directly returns the selected model to update custom_model_box
|
406 |
-
# If custom_model_box is meant to override, this keeps them in sync until user types in custom_model_box
|
407 |
return selected
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
413 |
|
414 |
-
text_content =
|
415 |
-
files =
|
416 |
|
417 |
-
print(f"
|
418 |
-
print(f"
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
history
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
427 |
for file_path in files:
|
428 |
-
if file_path and isinstance(file_path, str):
|
429 |
-
|
430 |
-
# The actual file path is used by `respond` via `bot`
|
431 |
history.append([f"", None])
|
432 |
-
print(f"Appended image to history: {file_path}")
|
433 |
-
|
434 |
-
# If neither text nor files, don't add an empty turn
|
435 |
-
if not text_content and not files:
|
436 |
-
print("Empty input, no change to history.")
|
437 |
-
return history # Return current history as is
|
438 |
|
439 |
-
|
|
|
|
|
|
|
|
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
max_tokens: int,
|
446 |
-
temperature: float,
|
447 |
-
top_p: float,
|
448 |
-
freq_penalty: float,
|
449 |
-
seed: int,
|
450 |
-
provider: str,
|
451 |
-
api_key: str,
|
452 |
-
custom_model: str,
|
453 |
-
# model_search_term: str, # This argument comes from model_search_box
|
454 |
-
selected_model: str # This argument comes from featured_model_radio
|
455 |
-
):
|
456 |
-
"""
|
457 |
-
Processes user input from the chat history, calls the language model via the 'respond'
|
458 |
-
function, and streams the bot's response back to update the chat history.
|
459 |
-
This function is intended to be exposed as an MCP tool.
|
460 |
-
|
461 |
-
Args:
|
462 |
-
history (list[list[str | None]]): The conversation history.
|
463 |
-
Each item is [user_message, bot_message].
|
464 |
-
User messages can be text or markdown image paths like "".
|
465 |
-
system_msg (str): The system prompt.
|
466 |
-
max_tokens (int): Maximum number of tokens to generate.
|
467 |
-
temperature (float): Sampling temperature for generation.
|
468 |
-
top_p (float): Top-P (nucleus) sampling probability.
|
469 |
-
freq_penalty (float): Frequency penalty for generation.
|
470 |
-
seed (int): Random seed for generation (-1 for random).
|
471 |
-
provider (str): The inference provider to use.
|
472 |
-
api_key (str): Custom API key, if provided by the user.
|
473 |
-
custom_model (str): Custom model path/ID. If empty, selected_model is used.
|
474 |
-
selected_model (str): The model selected from the featured list.
|
475 |
-
|
476 |
-
Yields:
|
477 |
-
list[list[str | None]]: The updated chat history with the bot's streaming response.
|
478 |
-
"""
|
479 |
-
print(f"Bot function called. History: {history}")
|
480 |
-
if not history or history[-1][0] is None: # Check if last user message is None
|
481 |
-
print("No user message in the last history turn to process.")
|
482 |
-
# yield history # removed to avoid issues with Gradio expecting a specific sequence
|
483 |
-
return # Or raise an error, or handle appropriately
|
484 |
-
|
485 |
-
# The last user message is history[-1][0]
|
486 |
-
# The bot's response will go into history[-1][1]
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
current_turn_image_paths = []
|
491 |
-
|
492 |
-
# Check if the last user message in history is an image markdown
|
493 |
-
if isinstance(user_turn_content, str) and user_turn_content.startswith(":
|
494 |
-
# This is an image message
|
495 |
-
img_path = user_turn_content.replace(".replace(")", "")
|
496 |
-
current_turn_image_paths.append(img_path)
|
497 |
-
# Check if there was a text message immediately preceding this image in the same "turn"
|
498 |
-
# This requires looking at how `user` function structures history.
|
499 |
-
# `user` adds text and images as separate entries in history.
|
500 |
-
# So, if history[-1][0] is an image, history[-2][0] might be related text IF it was part of the same multimodal input.
|
501 |
-
# This logic becomes complex. Simpler: assume each history entry is distinct.
|
502 |
-
# For MCP, it's better if the client structures the call to `bot` clearly.
|
503 |
-
print(f"Processing image from history: {img_path}")
|
504 |
-
elif isinstance(user_turn_content, str):
|
505 |
-
# This is a text message
|
506 |
-
current_turn_text_message = user_turn_content
|
507 |
-
print(f"Processing text from history: {current_turn_text_message}")
|
508 |
-
else:
|
509 |
-
print(f"Unexpected content in history user turn: {user_turn_content}")
|
510 |
-
# yield history # removed
|
511 |
-
return
|
512 |
-
|
513 |
-
|
514 |
-
history[-1][1] = "" # Initialize bot response field for the current turn
|
515 |
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
None,
|
556 |
-
[msg]
|
557 |
-
)
|
558 |
|
559 |
-
model_search_box.change(
|
560 |
-
fn=filter_models, inputs=model_search_box, outputs=featured_model_radio
|
561 |
-
)
|
562 |
print("Model search box change event linked.")
|
563 |
|
564 |
-
featured_model_radio.change(
|
565 |
-
fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box
|
566 |
-
)
|
567 |
print("Featured model radio button change event linked.")
|
568 |
|
569 |
-
byok_textbox.change(
|
570 |
-
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
|
571 |
-
)
|
572 |
print("BYOK textbox change event linked.")
|
573 |
|
574 |
-
provider_radio.change(
|
575 |
-
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
|
576 |
-
)
|
577 |
print("Provider radio button change event linked.")
|
578 |
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
print("Gradio interface initialized.")
|
580 |
|
581 |
if __name__ == "__main__":
|
582 |
print("Launching the demo application.")
|
583 |
-
|
584 |
-
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
from smolagents.mcp_client import MCPClient
|
9 |
|
10 |
+
# Global variables for MCP Client and TTS tool
|
11 |
+
mcp_client = None
|
12 |
+
tts_tool = None
|
13 |
+
|
14 |
+
# Access token from environment
|
15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
16 |
print("Access token loaded.")
|
17 |
|
|
|
23 |
|
24 |
try:
|
25 |
print(f"Encoding image from path: {image_path}")
|
|
|
|
|
26 |
if isinstance(image_path, Image.Image):
|
27 |
image = image_path
|
28 |
else:
|
|
|
29 |
image = Image.open(image_path)
|
30 |
|
|
|
31 |
if image.mode == 'RGBA':
|
32 |
image = image.convert('RGB')
|
33 |
|
|
|
34 |
buffered = io.BytesIO()
|
35 |
+
image.save(buffered, format="JPEG")
|
36 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
37 |
print("Image encoded successfully")
|
38 |
return img_str
|
|
|
40 |
print(f"Error encoding image: {e}")
|
41 |
return None
|
42 |
|
43 |
+
# Initialize MCP Client at startup
|
44 |
+
def init_mcp_client():
|
45 |
+
global mcp_client, tts_tool
|
46 |
+
try:
|
47 |
+
mcp_client = MCPClient({"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"})
|
48 |
+
tools = mcp_client.get_tools()
|
49 |
+
tts_tool = next((tool for tool in tools if tool.name == "text_to_audio"), None)
|
50 |
+
if tts_tool:
|
51 |
+
print("Successfully connected to Kokoro TTS tool")
|
52 |
+
else:
|
53 |
+
print("TTS tool not found")
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error initializing MCP Client: {e}")
|
56 |
+
|
57 |
def respond(
|
58 |
message,
|
59 |
+
image_files,
|
60 |
history: list[tuple[str, str]],
|
61 |
system_message,
|
62 |
max_tokens,
|
|
|
67 |
provider,
|
68 |
custom_api_key,
|
69 |
custom_model,
|
70 |
+
model_search_term,
|
71 |
+
selected_model
|
72 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
print(f"Received message: {message}")
|
74 |
+
print(f"Received {len(image_files) if image_files else 0} images")
|
75 |
print(f"History: {history}")
|
76 |
print(f"System message: {system_message}")
|
77 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
|
|
82 |
print(f"Model search term: {model_search_term}")
|
83 |
print(f"Selected model from radio: {selected_model}")
|
84 |
|
|
|
85 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
86 |
|
87 |
if custom_api_key.strip() != "":
|
|
|
89 |
else:
|
90 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
91 |
|
|
|
92 |
client = InferenceClient(token=token_to_use, provider=provider)
|
93 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
94 |
|
|
|
95 |
if seed == -1:
|
96 |
seed = None
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
if image_files and len(image_files) > 0:
|
99 |
+
user_content = []
|
100 |
+
if message and message.strip():
|
101 |
+
user_content.append({"type": "text", "text": message})
|
102 |
+
|
103 |
+
for img in image_files:
|
104 |
+
if img is not None:
|
105 |
try:
|
106 |
+
encoded_image = encode_image(img)
|
107 |
if encoded_image:
|
108 |
+
user_content.append({
|
109 |
"type": "image_url",
|
110 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
|
|
|
|
111 |
})
|
112 |
except Exception as e:
|
113 |
+
print(f"Error encoding image: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
else:
|
115 |
+
user_content = message
|
|
|
116 |
|
117 |
+
messages = [{"role": "system", "content": system_message}]
|
|
|
118 |
print("Initial messages array constructed.")
|
119 |
|
120 |
+
for val in history:
|
121 |
+
user_part = val[0]
|
122 |
+
assistant_part = val[1]
|
123 |
+
if user_part:
|
124 |
+
if isinstance(user_part, tuple) and len(user_part) == 2:
|
125 |
+
history_content = []
|
126 |
+
if user_part[0]:
|
127 |
+
history_content.append({"type": "text", "text": user_part[0]})
|
128 |
+
|
129 |
+
for img in user_part[1]:
|
130 |
+
if img:
|
131 |
+
try:
|
132 |
+
encoded_img = encode_image(img)
|
133 |
+
if encoded_img:
|
134 |
+
history_content.append({
|
135 |
+
"type": "image_url",
|
136 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
|
137 |
+
})
|
138 |
+
except Exception as e:
|
139 |
+
print(f"Error encoding history image: {e}")
|
140 |
+
|
141 |
+
messages.append({"role": "user", "content": history_content})
|
142 |
+
else:
|
143 |
+
messages.append({"role": "user", "content": user_part})
|
144 |
+
print(f"Added user message to context (type: {type(user_part)})")
|
145 |
|
146 |
+
if assistant_part:
|
147 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
148 |
+
print(f"Added assistant message to context: {assistant_part}")
|
149 |
|
150 |
+
messages.append({"role": "user", "content": user_content})
|
151 |
+
print(f"Latest user message appended (content type: {type(user_content)})")
|
|
|
152 |
|
|
|
|
|
153 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
154 |
print(f"Model selected for inference: {model_to_use}")
|
155 |
|
156 |
+
response = ""
|
|
|
157 |
print(f"Sending request to {provider} provider.")
|
158 |
|
|
|
159 |
parameters = {
|
160 |
"max_tokens": max_tokens,
|
161 |
"temperature": temperature,
|
|
|
166 |
if seed is not None:
|
167 |
parameters["seed"] = seed
|
168 |
|
|
|
169 |
try:
|
|
|
170 |
stream = client.chat_completion(
|
171 |
model=model_to_use,
|
172 |
+
messages=messages,
|
173 |
stream=True,
|
174 |
**parameters
|
175 |
)
|
176 |
|
177 |
print("Received tokens: ", end="", flush=True)
|
178 |
|
|
|
179 |
for chunk in stream:
|
180 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
|
|
181 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
182 |
+
token_text = chunk.choices[0].delta.content
|
183 |
+
if token_text:
|
184 |
+
print(token_text, end="", flush=True)
|
185 |
+
response += token_text
|
186 |
+
yield response
|
187 |
|
188 |
print()
|
189 |
except Exception as e:
|
190 |
print(f"Error during inference: {e}")
|
191 |
+
response += f"\nError: {str(e)}"
|
192 |
+
yield response
|
193 |
|
194 |
print("Completed response generation.")
|
195 |
|
196 |
+
# Function to generate audio from the last bot response
|
197 |
+
def generate_audio(history):
|
198 |
+
if not history or len(history) == 0:
|
199 |
+
print("No history available for audio generation")
|
200 |
+
return None
|
201 |
+
last_message = history[-1][1] # Bot's response
|
202 |
+
if not last_message or not isinstance(last_message, str):
|
203 |
+
print("Last message is empty or not a string")
|
204 |
+
return None
|
205 |
+
if tts_tool:
|
206 |
+
try:
|
207 |
+
# Call the TTS tool directly, expecting (sample_rate, audio_array)
|
208 |
+
result = tts_tool(text=last_message, speed=1.0)
|
209 |
+
if result and len(result) == 2:
|
210 |
+
sample_rate, audio_data = result
|
211 |
+
print("Audio generated successfully")
|
212 |
+
return (sample_rate, audio_data)
|
213 |
+
else:
|
214 |
+
print("TTS tool returned invalid result")
|
215 |
+
return None
|
216 |
+
except Exception as e:
|
217 |
+
print(f"Error generating audio: {e}")
|
218 |
+
return None
|
219 |
+
else:
|
220 |
+
print("TTS tool not available")
|
221 |
+
return None
|
222 |
+
|
223 |
def validate_provider(api_key, provider):
|
224 |
if not api_key.strip() and provider != "hf-inference":
|
225 |
return gr.update(value="hf-inference")
|
226 |
return gr.update(value=provider)
|
227 |
|
228 |
+
# Gradio UI
|
229 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
|
|
|
|
|
230 |
height=600,
|
231 |
show_copy_button=True,
|
232 |
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
|
|
234 |
)
|
235 |
print("Chatbot interface created.")
|
236 |
|
|
|
237 |
msg = gr.MultimodalTextbox(
|
238 |
placeholder="Type a message or upload images...",
|
239 |
show_label=False,
|
|
|
243 |
file_count="multiple",
|
244 |
sources=["upload"]
|
245 |
)
|
246 |
+
|
247 |
+
# Audio generation components
|
248 |
+
with gr.Row():
|
249 |
+
generate_audio_btn = gr.Button("Generate Audio from Last Response")
|
250 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
251 |
+
|
252 |
with gr.Accordion("Settings", open=False):
|
|
|
253 |
system_message_box = gr.Textbox(
|
254 |
value="You are a helpful AI assistant that can understand images and text.",
|
255 |
placeholder="You are a helpful assistant.",
|
256 |
label="System Prompt"
|
257 |
)
|
258 |
|
|
|
259 |
with gr.Row():
|
260 |
with gr.Column():
|
261 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
262 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
263 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
with gr.Column():
|
265 |
+
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
266 |
+
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
|
|
268 |
providers_list = [
|
269 |
+
"hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"
|
|
|
270 |
]
|
271 |
|
272 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
273 |
+
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here.", placeholder="Enter your Hugging Face API token", type="password")
|
274 |
+
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
|
275 |
+
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
models_list = [
|
278 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
|
279 |
+
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
280 |
+
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
281 |
+
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
282 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
|
283 |
+
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
|
284 |
+
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct"
|
|
|
|
|
|
|
285 |
]
|
286 |
|
287 |
+
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
|
|
|
|
|
|
|
|
288 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
289 |
|
290 |
+
chat_history = gr.State([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
+
def filter_models(search_term):
|
|
|
293 |
print(f"Filtering models with search term: {search_term}")
|
294 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
295 |
print(f"Filtered models: {filtered}")
|
296 |
+
return gr.update(choices=filtered)
|
297 |
|
298 |
+
def set_custom_model_from_radio(selected):
|
|
|
299 |
print(f"Featured model selected: {selected}")
|
|
|
|
|
300 |
return selected
|
301 |
|
302 |
+
def user(user_message, history):
|
303 |
+
print(f"User message received: {user_message}")
|
304 |
+
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
305 |
+
print("Empty message, skipping")
|
306 |
+
return history
|
307 |
|
308 |
+
text_content = user_message.get("text", "").strip()
|
309 |
+
files = user_message.get("files", [])
|
310 |
|
311 |
+
print(f"Text content: {text_content}")
|
312 |
+
print(f"Files: {files}")
|
313 |
|
314 |
+
if not text_content and not files:
|
315 |
+
print("No content to display")
|
316 |
+
return history
|
317 |
+
|
318 |
+
if files and len(files) > 0:
|
319 |
+
if text_content:
|
320 |
+
print(f"Adding text message: {text_content}")
|
321 |
+
history.append([text_content, None])
|
322 |
+
|
323 |
for file_path in files:
|
324 |
+
if file_path and isinstance(file_path, str):
|
325 |
+
print(f"Adding image: {file_path}")
|
|
|
326 |
history.append([f"", None])
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
+
return history
|
329 |
+
else:
|
330 |
+
print(f"Adding text-only message: {text_content}")
|
331 |
+
history.append([text_content, None])
|
332 |
+
return history
|
333 |
|
334 |
+
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
335 |
+
if not history or len(history) == 0:
|
336 |
+
print("No history to process")
|
337 |
+
return history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
user_message = history[-1][0]
|
340 |
+
print(f"Processing user message: {user_message}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
is_image = False
|
343 |
+
image_path = None
|
344 |
+
text_content = user_message
|
345 |
+
|
346 |
+
if isinstance(user_message, str) and user_message.startswith(":
|
347 |
+
is_image = True
|
348 |
+
image_path = user_message.replace(".replace(")", "")
|
349 |
+
print(f"Image detected: {image_path}")
|
350 |
+
text_content = ""
|
351 |
+
|
352 |
+
text_context = ""
|
353 |
+
if is_image and len(history) > 1:
|
354 |
+
prev_message = history[-2][0]
|
355 |
+
if isinstance(prev_message, str) and not prev_message.startswith(":
|
356 |
+
text_context = prev_message
|
357 |
+
print(f"Using text context from previous message: {text_context}")
|
358 |
+
|
359 |
+
history[-1][1] = ""
|
360 |
+
|
361 |
+
if is_image:
|
362 |
+
for response in respond(
|
363 |
+
text_context, [image_path], history[:-1], system_msg, max_tokens, temperature, top_p,
|
364 |
+
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
|
365 |
+
):
|
366 |
+
history[-1][1] = response
|
367 |
+
yield history
|
368 |
+
else:
|
369 |
+
for response in respond(
|
370 |
+
text_content, None, history[:-1], system_msg, max_tokens, temperature, top_p,
|
371 |
+
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
|
372 |
+
):
|
373 |
+
history[-1][1] = response
|
374 |
+
yield history
|
375 |
+
|
376 |
+
msg.submit(user, [msg, chatbot], [chatbot], queue=False).then(
|
377 |
+
bot, [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
378 |
+
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
379 |
+
model_search_box, featured_model_radio], [chatbot]
|
380 |
+
).then(lambda: {"text": "", "files": []}, None, [msg])
|
|
|
|
|
|
|
381 |
|
382 |
+
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
|
|
|
|
383 |
print("Model search box change event linked.")
|
384 |
|
385 |
+
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
|
|
|
|
386 |
print("Featured model radio button change event linked.")
|
387 |
|
388 |
+
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
389 |
print("BYOK textbox change event linked.")
|
390 |
|
391 |
+
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
392 |
print("Provider radio button change event linked.")
|
393 |
|
394 |
+
# Event handler for audio generation
|
395 |
+
generate_audio_btn.click(fn=generate_audio, inputs=[chatbot], outputs=[audio_output])
|
396 |
+
|
397 |
+
# Initialize MCP Client on app load
|
398 |
+
demo.load(init_mcp_client)
|
399 |
+
|
400 |
print("Gradio interface initialized.")
|
401 |
|
402 |
if __name__ == "__main__":
|
403 |
print("Launching the demo application.")
|
404 |
+
try:
|
405 |
+
demo.launch(server_api=True)
|
406 |
+
finally:
|
407 |
+
if mcp_client:
|
408 |
+
mcp_client.close()
|
409 |
+
print("MCP Client closed.")
|