Spaces:
Running
Running
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng | |
import torch | |
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
""" | |
Args: | |
lengths: | |
A 1-D tensor containing sentence lengths. | |
max_len: | |
The length of masks. | |
Returns: | |
Return a 2-D bool tensor, where masked positions | |
are filled with `True` and non-masked positions are | |
filled with `False`. | |
>>> lengths = torch.tensor([1, 3, 2, 5]) | |
>>> make_pad_mask(lengths) | |
tensor([[False, True, True, True, True], | |
[False, False, False, True, True], | |
[False, False, True, True, True], | |
[False, False, False, False, False]]) | |
""" | |
assert lengths.ndim == 1, lengths.ndim | |
max_len = max(max_len, lengths.max()) | |
n = lengths.size(0) | |
seq_range = torch.arange(0, max_len, device=lengths.device) | |
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len) | |
return expaned_lengths >= lengths.unsqueeze(-1) | |
def generate_partial_autoregressive_mask(sz, start, end): | |
mask = torch.zeros(sz, sz).bool() | |
mask[start:end, start:end] = torch.triu(torch.ones(end-start, end-start,dtype=torch.bool), diagonal=1) | |
mask[:start, start:end] = True | |
mask[end:, start:end] = True | |
return mask | |