lhoestq's picture
lhoestq HF Staff
initial commit
daa36b9
raw
history blame
8.34 kB
import gradio as gr
from functools import lru_cache
from hffs.fs import HfFileSystem
from typing import List, Tuple, Callable
import pandas as pd
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from functools import partial
from io import StringIO
from tqdm.contrib.concurrent import thread_map
from datasets import Features
class AppError(RuntimeError):
pass
PAGE_SIZE = 20
@lru_cache(maxsize=128)
def get_parquet_fs(dataset: str) -> HfFileSystem:
try:
fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet")
if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")):
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
return fs
except:
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
@lru_cache(maxsize=128)
def get_parquet_configs(dataset: str) -> List[str]:
fs = get_parquet_fs(dataset)
return [path for path in fs.ls("") if fs.isdir(path)]
def _sorted_split_key(split: str) -> str:
return split if not split.startswith("train") else chr(0) + split # always "train" first
@lru_cache(maxsize=128)
def get_parquet_splits(dataset: str, config: str) -> List[str]:
fs = get_parquet_fs(dataset)
all_parts = [path.rsplit(".", 1)[0].split("-") for path in fs.glob(f"{config}/*.parquet")]
return sorted(set(parts[-4] if len(parts) > 3 and parts[-2] == "of" else parts[-1] for parts in all_parts), key=_sorted_split_key)
def sanitize_inputs(dataset: str, config: str, split: str, page: str) -> Tuple[str, str, str, int]:
try:
page = int(page)
assert page > 0
except:
raise AppError(f"Bad page: {page}")
if not dataset:
raise AppError("Empty dataset name")
if not config:
raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
if not split:
raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
return dataset, config, split, int(page)
RowGroupReaders = List[Callable[[], pa.Table]]
@lru_cache(maxsize=128)
def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, str]:
fs = get_parquet_fs(dataset)
sources = fs.glob(f"{config}/*-{split}.parquet") + fs.glob(f"{config}/*-{split}-*-of-*.parquet")
if not sources:
if config not in get_parquet_configs(dataset):
raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
else:
raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources)
features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema())
columns = [col for col in features if all(bad_type not in str(features[col]) for bad_type in ["Image(", "Audio(", "'binary'"])]
info = "" if len(columns) == len(features) else f"Some columns are not supported yet: {sorted(set(features) - set(columns))}"
rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)])
rg_readers = [partial(pf.read_row_group, i, columns=columns) for pf in all_pf for i in range(pf.metadata.num_row_groups)]
max_page = rg_offsets[-1] // PAGE_SIZE
return rg_offsets, rg_readers, max_page, info
def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame:
start_row, end_row = (page - 1) * page_size, page * page_size
start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right")
if page < 1 or end_rg >= len(rg_readers):
raise AppError(f"Page {page} does not exist")
pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)])
offset = start_row - rg_offsets[start_rg - 1] if start_rg else start_row
pa_table = pa_table.slice(offset, end_row - start_row)
return pa_table.to_pandas()
@lru_cache(maxsize=128)
def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]:
dataset, config, split, page = sanitize_inputs(dataset, config, split, page)
rg_offsets, rg_readers, max_page, info = index(dataset, config, split)
df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers)
buf = StringIO()
df.to_json(buf, lines=True, orient="records")
return buf.getvalue(), max_page, info
with gr.Blocks() as demo:
gr.Markdown("# 📖 Dataset Explorer\n\nAccess any slice of data of any dataset on the [Hugging Face Dataset Hub](https://huggingface.co/datasets)")
cp_dataset = gr.Textbox("squad", label="Pick a dataset", placeholder="squad")
cp_go = gr.Button("Explore")
cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False)
cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False)
with gr.Row():
cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False)
cp_goto_page = gr.Button("Go to page", visible=False)
cp_error = gr.Markdown("", visible=False)
cp_info = gr.Markdown("", visible=False)
cp_result = gr.Markdown("", visible=False)
def show_error(message: str) -> dict():
return {
cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"),
cp_info: gr.update(visible=False, value=""),
cp_result: gr.update(visible=False, value=""),
}
def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str) -> dict:
try:
jsonl_result, max_page, info = get_page(dataset, config, split, page)
info = f"({info})" if info else ""
return {
cp_result: gr.update(visible=True, value=f"```json\n{jsonl_result}\n```"),
cp_info: gr.update(visible=True, value=f"Page {page}/{max_page}) {info}"),
cp_error: gr.update(visible=False, value="")
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict:
try:
return {
**show_dataset_at_config_and_split_and_page(dataset, config, split, "1"),
cp_page: gr.update(value="1", visible=True),
cp_goto_page: gr.update(visible=True),
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config(dataset: str, config: str) -> dict:
try:
splits = get_parquet_splits(dataset, config)
if not splits:
raise AppError(f"Dataset {dataset} with config {config} has no splits.")
else:
split = splits[0]
return {
**show_dataset_at_config_and_split(dataset, config, split),
cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1),
}
except AppError as err:
return show_error(str(err))
def show_dataset(dataset: str) -> dict:
try:
configs = get_parquet_configs(dataset)
if not configs:
raise AppError(f"Dataset {dataset} has no configs.")
else:
config = configs[0]
return {
**show_dataset_at_config(dataset, config),
cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1),
}
except AppError as err:
return show_error(str(err))
all_outputs = [cp_config, cp_split, cp_page, cp_goto_page, cp_result, cp_info, cp_error]
cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs)
cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs)
cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs)
cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs)
if __name__ == "__main__":
demo.launch()