Spaces:
Running
Running
[[Back]](..) | |
# VCTK | |
[VCTK](https://datashare.ed.ac.uk/handle/10283/3443) is an open English speech corpus. We provide examples | |
for building [Transformer](https://arxiv.org/abs/1809.08895) models on this dataset. | |
## Data preparation | |
Download data, create splits and generate audio manifests with | |
```bash | |
python -m examples.speech_synthesis.preprocessing.get_vctk_audio_manifest \ | |
--output-data-root ${AUDIO_DATA_ROOT} \ | |
--output-manifest-root ${AUDIO_MANIFEST_ROOT} | |
``` | |
Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with | |
```bash | |
python -m examples.speech_synthesis.preprocessing.get_feature_manifest \ | |
--audio-manifest-root ${AUDIO_MANIFEST_ROOT} \ | |
--output-root ${FEATURE_MANIFEST_ROOT} \ | |
--ipa-vocab --use-g2p | |
``` | |
where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example. | |
To denoise audio and trim leading/trailing silence using signal processing based VAD, run | |
```bash | |
for SPLIT in dev test train; do | |
python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \ | |
--audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \ | |
--output-dir ${PROCESSED_DATA_ROOT} \ | |
--denoise --vad --vad-agg-level 3 | |
done | |
``` | |
## Training | |
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#transformer).) | |
## Inference | |
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#inference).) | |
## Automatic Evaluation | |
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#automatic-evaluation).) | |
## Results | |
| --arch | Params | Test MCD | Model | | |
|---|---|---|---| | |
| tts_transformer | 54M | 3.4 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/vctk_transformer_phn.tar) | | |
[[Back]](..) | |