File size: 22,320 Bytes
130d8b3
d2beadd
 
 
 
 
 
f4ec98b
d2beadd
327d072
d2beadd
2ffa822
130d8b3
d2beadd
 
 
 
2c1976e
ac47a36
 
 
 
 
 
71d0d94
 
1f529ba
06d02f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f529ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8dbdd
1f529ba
 
2c1976e
1f529ba
 
 
 
 
 
 
 
 
 
 
2c1976e
1f529ba
71d0d94
 
 
 
1f529ba
 
 
 
71d0d94
 
1f529ba
2c1976e
1f529ba
 
 
 
 
 
 
2ffa822
 
 
 
 
 
1f529ba
 
 
 
 
 
 
 
 
2ffa822
 
 
1f529ba
 
 
 
 
2ffa822
 
 
1f529ba
 
 
 
 
 
 
 
 
 
 
2ffa822
 
1f529ba
 
 
 
 
2ffa822
 
 
1f529ba
 
 
 
 
 
 
 
 
 
 
2ffa822
 
 
 
1f529ba
 
 
 
 
 
 
2ffa822
 
 
1f529ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d0d94
1f529ba
2c1976e
ac47a36
1f529ba
ac47a36
1f529ba
 
 
 
 
 
 
 
 
 
 
 
71d0d94
 
9b72cf5
71d0d94
1f529ba
 
 
9ab860d
1f529ba
 
 
 
36e014d
71d0d94
9b72cf5
71d0d94
 
 
 
 
 
 
36e014d
ac47a36
6b8dbdd
162a025
 
 
 
 
1f529ba
 
 
 
9ab860d
6b8dbdd
1f529ba
 
 
 
9ab860d
1f529ba
6b8dbdd
 
1f529ba
 
 
 
 
 
 
9ab860d
71d0d94
6b8dbdd
 
1f529ba
 
 
 
 
 
 
 
 
 
 
36e014d
 
71d0d94
1f529ba
 
6b8dbdd
 
1f529ba
6b8dbdd
 
2ffa822
1f529ba
 
6b8dbdd
ac47a36
8d81cbf
 
7026cb4
 
9ab860d
 
 
 
 
 
 
 
3f7ccb2
 
9ab860d
3f7ccb2
 
9ab860d
2c1976e
1f529ba
5a293f6
36e014d
9ab860d
9b72cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab860d
7026cb4
9ab860d
 
 
 
 
 
 
 
7026cb4
 
9ab860d
 
 
162a025
 
7026cb4
 
162a025
 
 
 
 
 
7026cb4
 
 
 
 
162a025
 
 
 
 
 
 
 
 
 
5a293f6
9ab860d
 
5a293f6
 
7026cb4
5a293f6
 
162a025
5a293f6
 
7026cb4
5a293f6
 
 
7026cb4
5a293f6
 
 
71d0d94
 
9b72cf5
 
5a293f6
71d0d94
5a293f6
 
 
71d0d94
5a293f6
71d0d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a293f6
9ab860d
5a293f6
71d0d94
 
 
 
5a293f6
 
162a025
 
 
 
 
 
 
 
8d81cbf
7026cb4
5a293f6
162a025
71d0d94
5a293f6
2c1976e
1f529ba
9ab860d
 
 
 
 
ac47a36
2c1976e
1f529ba
 
2c1976e
 
1f529ba
 
ac47a36
 
 
 
 
 
 
 
 
 
 
71d0d94
ac47a36
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator

import gradio as gr
from gradio import ChatMessage

# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)

from octotools.models.initializer import Initializer
from octotools.models.planner import Planner
from octotools.models.memory import Memory
from octotools.models.executor import Executor
from octotools.models.utils import make_json_serializable

from utils import save_feedback


########### Test Huggingface Dataset ###########
from pathlib import Path
from huggingface_hub import CommitScheduler

# Add these near the top of the file with other constants
DATASET_DIR = Path("feedback_dataset")
DATASET_DIR.mkdir(parents=True, exist_ok=True)
DATASET_PATH = DATASET_DIR / f"feedback-{time.strftime('%Y%m%d_%H%M%S')}.json"

# Get Huggingface token from environment variable
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

scheduler = CommitScheduler(
    repo_id="lupantech/OctoTools-Gradio-Demo-User-Data",
    repo_type="dataset",
    folder_path=DATASET_DIR,
    path_in_repo="data",
    token=HF_TOKEN
)

def save_feedback(root_cache_dir: str, feedback_type: str, comment: str = None) -> None:
    """Save user feedback to Huggingface dataset"""
    with scheduler.lock:
        with DATASET_PATH.open("a") as f:
            feedback_data = {
                "query_id": os.path.basename(root_cache_dir),
                "feedback_type": feedback_type,
                "comment": comment,
                "datetime": time.strftime("%Y%m%d_%H%M%S")
            }
            json.dump(feedback_data, f)
            f.write("\n")
########### End of Test Huggingface Dataset ###########

class Solver:
    def __init__(
        self,
        planner,
        memory,
        executor,
        task: str,
        task_description: str,
        output_types: str = "base,final,direct",
        index: int = 0,
        verbose: bool = True,
        max_steps: int = 10,
        max_time: int = 60,
        root_cache_dir: str = "cache"
    ):
        self.planner = planner
        self.memory = memory
        self.executor = executor
        self.task = task
        self.task_description = task_description
        self.index = index
        self.verbose = verbose
        self.max_steps = max_steps
        self.max_time = max_time
        self.root_cache_dir = root_cache_dir

        self.output_types = output_types.lower().split(',')
        assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."


    def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
        """
        Streams intermediate thoughts and final responses for the problem-solving process based on user input.
        
        Args:
            user_query (str): The text query input from the user.
            user_image (Image.Image): The uploaded image from the user (PIL Image object).
            messages (list): A list of ChatMessage objects to store the streamed responses.
        """

        if user_image:
            # # Convert PIL Image to bytes (for processing)
            # img_bytes_io = io.BytesIO()
            # user_image.save(img_bytes_io, format="PNG")  # Convert image to PNG bytes
            # img_bytes = img_bytes_io.getvalue()  # Get bytes
            
            # Use image paths instead of bytes,
            # os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
            # img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')

            img_path = os.path.join(self.root_cache_dir, 'query_image.jpg')
            user_image.save(img_path)
        else:
            img_path = None

        # Set tool cache directory
        _cache_dir = os.path.join(self.root_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache
        self.executor.set_query_cache_dir(_cache_dir)
        
        # Step 1: Display the received inputs
        if user_image:
            messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
        else:
            messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
        yield messages

        # # Step 2: Add "thinking" status while processing
        # messages.append(ChatMessage(
        #     role="assistant",
        #     content="",
        #     metadata={"title": "⏳ Thinking: Processing input..."}
        # ))

        # Step 3: Initialize problem-solving state
        start_time = time.time()
        step_count = 0
        json_data = {"query": user_query, "image": "Image received as bytes"}

        # Step 4: Query Analysis
        query_analysis = self.planner.analyze_query(user_query, img_path)
        json_data["query_analysis"] = query_analysis
        messages.append(ChatMessage(role="assistant", 
                                    content=f"{query_analysis}", 
                                    metadata={"title": "πŸ” Query Analysis"}))
        yield messages

        # Step 5: Execution loop (similar to your step-by-step solver)
        while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
            step_count += 1
            # messages.append(ChatMessage(role="assistant", 
            #                             content=f"Generating next step...",
            #                             metadata={"title": f"πŸ”„ Step {step_count}"}))
            yield messages

            # Generate the next step
            next_step = self.planner.generate_next_step(
                user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
            )
            context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)

            # Display the step information
            messages.append(ChatMessage(
                role="assistant",
                content=f"- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}",
                metadata={"title": f"πŸ“Œ Step {step_count}: {tool_name}"}
            ))
            yield messages

            # Handle tool execution or errors
            if tool_name not in self.planner.available_tools:
                messages.append(ChatMessage(
                    role="assistant", 
                    content=f"⚠️ Error: Tool '{tool_name}' is not available."))
                yield messages
                continue

            # Execute the tool command
            tool_command = self.executor.generate_tool_command(
                user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
            )
            explanation, command = self.executor.extract_explanation_and_command(tool_command)
            result = self.executor.execute_tool_command(tool_name, command)
            result = make_json_serializable(result)

            messages.append(ChatMessage(
                role="assistant", 
                content=f"{json.dumps(result, indent=4)}",
                metadata={"title": f"βœ… Step {step_count} Result: {tool_name}"}))
            yield messages

            # Step 6: Memory update and stopping condition
            self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
            stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
            conclusion = self.planner.extract_conclusion(stop_verification)

            messages.append(ChatMessage(
                role="assistant", 
                content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
            yield messages

            if conclusion == 'STOP':
                break

        # Step 7: Generate Final Output (if needed)
        if 'final' in self.output_types:
            final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
            messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
            yield messages

        if 'direct' in self.output_types:
            direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
            messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
            yield messages

        # Step 8: Completion Message
        messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process completed."))
        yield messages
            

def parse_arguments():
    parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
    parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
    parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
    parser.add_argument("--task", default="minitoolbench", help="Task to run.")
    parser.add_argument("--task_description", default="", help="Task description.")
    parser.add_argument(
        "--output_types",
        default="base,final,direct",
        help="Comma-separated list of required outputs (base,final,direct)"
    )
    parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
    parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
    parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")

    # NOTE: Add new arguments
    parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
    parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.")
    return parser.parse_args()


def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None):
    """
    Wrapper function to connect the solver to Gradio.
    Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
    """

    # Generate shorter ID (Date and first 8 characters of UUID)
    query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474
    print(f"Query ID: {query_id}")

    # Create a directory for the query ID
    query_dir = os.path.join(args.root_cache_dir, query_id)
    os.makedirs(query_dir, exist_ok=True)
    args.root_cache_dir = query_dir

    if api_key is None:
        return [["assistant", "⚠️ Error: OpenAI API Key is required."]]
    
    # # Initialize Tools
    # enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []

    # # Hack enabled_tools
    # enabled_tools = ["Generalist_Solution_Generator_Tool"]

    # Instantiate Initializer
    initializer = Initializer(
        enabled_tools=enabled_tools,
        model_string=llm_model_engine,
        api_key=api_key
    )

    # Instantiate Planner
    planner = Planner(
        llm_engine_name=llm_model_engine,
        toolbox_metadata=initializer.toolbox_metadata,
        available_tools=initializer.available_tools,
        api_key=api_key
    )

    # Instantiate Memory
    memory = Memory()

    # Instantiate Executor
    executor = Executor(
        llm_engine_name=llm_model_engine,
        root_cache_dir=args.root_cache_dir, # NOTE
        enable_signal=False,
        api_key=api_key
    )

    # Instantiate Solver
    solver = Solver(
        planner=planner,
        memory=memory,
        executor=executor,
        task=args.task,
        task_description=args.task_description,
        output_types=args.output_types,  # Add new parameter
        verbose=args.verbose,
        max_steps=max_steps,
        max_time=max_time,
        root_cache_dir=args.root_cache_dir # NOTE
    )

    if solver is None:
        return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]

    messages = []  # Initialize message list
    for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
        yield [msg for msg in message_batch]  # Ensure correct format for Gradio Chatbot


def main(args):
    #################### Gradio Interface ####################
    with gr.Blocks() as demo:
    # with gr.Blocks(theme=gr.themes.Soft()) as demo:
        # Theming https://www.gradio.app/guides/theming-guide

        gr.Markdown("# πŸ™ Chat with OctoTools: An Agentic Framework for Complex Reasoning")  # Title
        # gr.Markdown("[![OctoTools](https://img.shields.io/badge/OctoTools-Agentic%20Framework%20for%20Complex%20Reasoning-blue)](https://octotools.github.io/)")  # Title
        gr.Markdown("""
        **OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains. 
        It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage. 
                    
        [Website](https://octotools.github.io/) | 
        [Github](https://github.com/octotools/octotools) | 
        [arXiv](https://arxiv.org/abs/2502.xxxxx) | 
        [Paper](https://arxiv.org/pdf/2502.xxxxx) | 
        [Tool Cards](https://octotools.github.io/#tool-cards) | 
        [Example Visualizations](https://octotools.github.io/#visualization) | 
        [Discord](https://discord.gg/NMJx66DC)
        """)

        with gr.Row():
            # Left column for settings
            with gr.Column(scale=1):
                with gr.Row():
                    if args.openai_api_source == "user_provided":
                        print("Using API key from user input.")
                        api_key = gr.Textbox(
                            show_label=True,
                            placeholder="Your API key will not be stored in any way.",
                            type="password", 
                            label="OpenAI API Key",
                            # container=False
                        )
                    else:
                        print(f"Using local API key from environment variable: {os.getenv('OPENAI_API_KEY')[:4]}...")
                        api_key = gr.Textbox(
                            value=os.getenv("OPENAI_API_KEY"),
                            visible=False,
                            interactive=False
                        )

                with gr.Row():
                    llm_model_engine = gr.Dropdown(
                        choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
                                "gpt-4o-mini", "gpt-4o-mini-2024-07-18"], 
                        value="gpt-4o", 
                        label="LLM Model"
                    )
                with gr.Row():
                    max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
                
                with gr.Row():
                    max_time = gr.Slider(value=180, minimum=60, maximum=300, step=30, label="Max Time (seconds)")

                with gr.Row():
                    # Container for tools section
                    with gr.Column():

                        # First row for checkbox group
                        enabled_tools = gr.CheckboxGroup(
                            choices=all_tools,
                            value=all_tools,
                            label="Selected Tools",
                        )

                        # Second row for buttons
                        with gr.Row():
                            enable_all_btn = gr.Button("Select All Tools")
                            disable_all_btn = gr.Button("Clear All Tools")
                        
                        # Add click handlers for the buttons
                        enable_all_btn.click(
                            lambda: all_tools,
                            outputs=enabled_tools
                        )
                        disable_all_btn.click(
                            lambda: [],
                            outputs=enabled_tools
                        )

            with gr.Column(scale=5):
                
                with gr.Row():
                    # Middle column for the query
                    with gr.Column(scale=2):
                        user_image = gr.Image(type="pil", label="Upload an Image (Optional)", height=500)  # Accepts multiple formats
                        
                        with gr.Row():
                            user_query = gr.Textbox( placeholder="Type your question here...", label="Question (Required)")

                        with gr.Row():
                            run_button = gr.Button("πŸ™ Submit and Run", variant="primary")  # Run button with blue color

                    # Right column for the output
                    with gr.Column(scale=3):
                        chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output (Deep Thinking)", height=500)

                        # TODO: Add actions to the buttons
                        with gr.Row(elem_id="buttons") as button_row:
                            upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True, variant="primary") # TODO
                            downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True, variant="primary") # TODO
                            # stop_btn = gr.Button(value="⛔️  Stop", interactive=True) # TODO
                            # clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True) # TODO

                        # TODO: Add comment textbox
                        with gr.Row():
                            comment_textbox = gr.Textbox(value="", 
                                                        placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
                                                        label="πŸ’¬ Comment (Type and press Enter to submit.)", interactive=True) # TODO
                            
                        # Update the button click handlers
                        upvote_btn.click(
                            fn=lambda: save_feedback(args.root_cache_dir, "upvote"),
                            inputs=[],
                            outputs=[]
                        )
                        
                        downvote_btn.click(
                            fn=lambda: save_feedback(args.root_cache_dir, "downvote"),
                            inputs=[],
                            outputs=[]
                        )

                        # Add handler for comment submission
                        comment_textbox.submit(
                            fn=lambda comment: save_feedback(args.root_cache_dir, comment),
                            inputs=[comment_textbox],
                            outputs=[]
                        )

                # Bottom row for examples
                with gr.Row():
                    with gr.Column(scale=5):
                        gr.Markdown("")
                        gr.Markdown("""
                                    ## πŸ’‘ Try these examples with suggested tools.
                                    """)
                        gr.Examples(
                            examples=[
                                [ None, "Who is the president of the United States?", ["Google_Search_Tool"]],

                                [ "examples/baseball.png", "How many baseballs are there?", ["Object_Detector_Tool"]],

                                [ None, "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ—, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ—4.", ["Python_Code_Generator_Tool"]],

                                [None, "What are the research trends in tool agents with large language models for scientific discovery? Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.", ["ArXiv_Paper_Searcher_Tool", "Pubmed_Search_Tool", "Nature_News_Fetcher_Tool"]],

                                [ "examples/rotting_kiwi.png", "You are given a 3 x 3 grid in which each cell can contain either no kiwi, one fresh kiwi, or one rotten kiwi. Every minute, any fresh kiwi that is 4-directionally adjacent to a rotten kiwi also becomes rotten. What is the minimum number of minutes that must elapse until no cell has a fresh kiwi?", ["Image_Captioner_Tool"]]

                            ],
                            inputs=[user_image, user_query, enabled_tools],
                            # label="Try these examples with suggested tools."
                        )

        # Link button click to function
        run_button.click(
            fn=solve_problem_gradio, 
            inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools], 
            outputs=chatbot_output
        )
    #################### Gradio Interface ####################

    # Launch the Gradio app
    demo.launch()


if __name__ == "__main__":
    args = parse_arguments()

    # Manually set enabled tools
    # args.enabled_tools = "Generalist_Solution_Generator_Tool"

    # All tools
    all_tools = [
        "Generalist_Solution_Generator_Tool",

        "Image_Captioner_Tool",
        "Object_Detector_Tool",
        "Relevant_Patch_Zoomer_Tool",
        "Text_Detector_Tool",

        "Python_Code_Generator_Tool",

        "ArXiv_Paper_Searcher_Tool",
        "Google_Search_Tool",
        "Nature_News_Fetcher_Tool",
        "Pubmed_Search_Tool",
        "URL_Text_Extractor_Tool",
        "Wikipedia_Knowledge_Searcher_Tool"
    ]
    args.enabled_tools = ",".join(all_tools)

    main(args)