Spaces:
Running
on
T4
Running
on
T4
File size: 13,658 Bytes
2c1976e 130d8b3 2c1976e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
import datetime
import os
# Ensure logs directory exists
os.makedirs("logs", exist_ok=True)
def log_user_data(inputs, outputs):
# Create a log entry
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp} | Input: {inputs} | Output: {outputs}\n"
# Write to a log file
with open("logs/user_data.log", "a") as log_file:
log_file.write(log_entry)
return outputs
def process_input(user_input):
response = f"Hello, {user_input}!"
log_user_data(user_input, response)
return response
demo = gr.Interface(fn=process_input, inputs="text", outputs="text")
demo.launch()
# import os
# import sys
# import json
# import argparse
# import time
# import io
# import uuid
# from PIL import Image
# from typing import List, Dict, Any, Iterator
# import gradio as gr
# # Add the project root to the Python path
# current_dir = os.path.dirname(os.path.abspath(__file__))
# project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
# sys.path.insert(0, project_root)
# from opentools.models.initializer import Initializer
# from opentools.models.planner import Planner
# from opentools.models.memory import Memory
# from opentools.models.executor import Executor
# from opentools.models.utlis import make_json_serializable
# solver = None
# class ChatMessage:
# def __init__(self, role: str, content: str, metadata: dict = None):
# self.role = role
# self.content = content
# self.metadata = metadata or {}
# class Solver:
# def __init__(
# self,
# planner,
# memory,
# executor,
# task: str,
# task_description: str,
# output_types: str = "base,final,direct",
# index: int = 0,
# verbose: bool = True,
# max_steps: int = 10,
# max_time: int = 60,
# output_json_dir: str = "results",
# root_cache_dir: str = "cache"
# ):
# self.planner = planner
# self.memory = memory
# self.executor = executor
# self.task = task
# self.task_description = task_description
# self.index = index
# self.verbose = verbose
# self.max_steps = max_steps
# self.max_time = max_time
# self.output_json_dir = output_json_dir
# self.root_cache_dir = root_cache_dir
# self.output_types = output_types.lower().split(',')
# assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# # self.benchmark_data = self.load_benchmark_data()
# def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
# """
# Streams intermediate thoughts and final responses for the problem-solving process based on user input.
# Args:
# user_query (str): The text query input from the user.
# user_image (Image.Image): The uploaded image from the user (PIL Image object).
# messages (list): A list of ChatMessage objects to store the streamed responses.
# """
# if user_image:
# # # Convert PIL Image to bytes (for processing)
# # img_bytes_io = io.BytesIO()
# # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# # img_bytes = img_bytes_io.getvalue() # Get bytes
# # Use image paths instead of bytes,
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
# user_image.save(img_path)
# else:
# img_path = None
# # Set query cache
# _cache_dir = os.path.join(self.root_cache_dir)
# self.executor.set_query_cache_dir(_cache_dir)
# # Step 1: Display the received inputs
# if user_image:
# messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}\nπΌοΈ Image Uploaded"))
# else:
# messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}"))
# yield messages
# # Step 2: Add "thinking" status while processing
# messages.append(ChatMessage(
# role="assistant",
# content="",
# metadata={"title": "β³ Thinking: Processing input..."}
# ))
# # Step 3: Initialize problem-solving state
# start_time = time.time()
# step_count = 0
# json_data = {"query": user_query, "image": "Image received as bytes"}
# # Step 4: Query Analysis
# import pdb; pdb.set_trace()
# query_analysis = self.planner.analyze_query(user_query, img_path)
# json_data["query_analysis"] = query_analysis
# messages.append(ChatMessage(role="assistant", content=f"π Query Analysis:\n{query_analysis}"))
# yield messages
# # Step 5: Execution loop (similar to your step-by-step solver)
# while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
# step_count += 1
# messages.append(ChatMessage(role="assistant", content=f"π Step {step_count}: Generating next step..."))
# yield messages
# # Generate the next step
# next_step = self.planner.generate_next_step(
# user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
# )
# context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# # Display the step information
# messages.append(ChatMessage(
# role="assistant",
# content=f"π Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
# ))
# yield messages
# # Handle tool execution or errors
# if tool_name not in self.planner.available_tools:
# messages.append(ChatMessage(role="assistant", content=f"β οΈ Error: Tool '{tool_name}' is not available."))
# yield messages
# continue
# # Execute the tool command
# tool_command = self.executor.generate_tool_command(
# user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
# )
# explanation, command = self.executor.extract_explanation_and_command(tool_command)
# result = self.executor.execute_tool_command(tool_name, command)
# result = make_json_serializable(result)
# messages.append(ChatMessage(role="assistant", content=f"β
Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
# yield messages
# # Step 6: Memory update and stopping condition
# self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
# stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
# conclusion = self.planner.extract_conclusion(stop_verification)
# messages.append(ChatMessage(role="assistant", content=f"π Step {step_count} Conclusion: {conclusion}"))
# yield messages
# if conclusion == 'STOP':
# break
# # Step 7: Generate Final Output (if needed)
# if 'final' in self.output_types:
# final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}"))
# yield messages
# if 'direct' in self.output_types:
# direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"πΉ Direct Output:\n{direct_output}"))
# yield messages
# # Step 8: Completion Message
# messages.append(ChatMessage(role="assistant", content="β
Problem-solving process complete."))
# yield messages
# def parse_arguments():
# parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
# parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
# parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
# parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
# parser.add_argument("--task", default="minitoolbench", help="Task to run.")
# parser.add_argument("--task_description", default="", help="Task description.")
# parser.add_argument(
# "--output_types",
# default="base,final,direct",
# help="Comma-separated list of required outputs (base,final,direct)"
# )
# parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
# parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
# parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
# parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
# parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
# parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
# return parser.parse_args()
# def solve_problem_gradio(user_query, user_image):
# """
# Wrapper function to connect the solver to Gradio.
# Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
# """
# global solver # Ensure we're using the globally defined solver
# if solver is None:
# return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]]
# messages = [] # Initialize message list
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
# def main(args):
# global solver
# # Initialize Tools
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# # Instantiate Initializer
# initializer = Initializer(
# enabled_tools=enabled_tools,
# model_string=args.llm_engine_name
# )
# # Instantiate Planner
# planner = Planner(
# llm_engine_name=args.llm_engine_name,
# toolbox_metadata=initializer.toolbox_metadata,
# available_tools=initializer.available_tools
# )
# # Instantiate Memory
# memory = Memory()
# # Instantiate Executor
# executor = Executor(
# llm_engine_name=args.llm_engine_name,
# root_cache_dir=args.root_cache_dir,
# enable_signal=False
# )
# # Instantiate Solver
# solver = Solver(
# planner=planner,
# memory=memory,
# executor=executor,
# task=args.task,
# task_description=args.task_description,
# output_types=args.output_types, # Add new parameter
# verbose=args.verbose,
# max_steps=args.max_steps,
# max_time=args.max_time,
# output_json_dir=args.output_json_dir,
# root_cache_dir=args.root_cache_dir
# )
# # Test Inputs
# # user_query = "How many balls are there in the image?"
# # user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
# # # Load the image as a PIL object
# # user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
# # print("\n=== Starting Problem Solving ===\n")
# # messages = []
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # for message in message_batch:
# # print(f"{message.role}: {message.content}")
# # messages = []
# # solver.stream_solve_user_problem(user_query, user_image, messages)
# # def solve_problem_stream(user_query, user_image):
# # messages = [] # Ensure it's a list of [role, content] pairs
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # yield message_batch # Stream messages correctly in tuple format
# # solve_problem_stream(user_query, user_image)
# # ========== Gradio Interface ==========
# with gr.Blocks() as demo:
# gr.Markdown("# π§ OctoTools AI Solver") # Title
# with gr.Row():
# user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
# user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
# run_button = gr.Button("Run") # Run button
# chatbot_output = gr.Chatbot(label="Problem-Solving Output")
# # Link button click to function
# run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
# # Launch the Gradio app
# demo.launch()
# if __name__ == "__main__":
# args = parse_arguments()
# main(args) |