Spaces:
Running
on
T4
Running
on
T4
File size: 15,735 Bytes
130d8b3 d2beadd f4ec98b d2beadd 327d072 d2beadd 2ffa822 130d8b3 d2beadd 2c1976e ac47a36 1f529ba 6b8dbdd 1f529ba 2c1976e 1f529ba 2c1976e 1f529ba 2c1976e 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2ffa822 1f529ba 2c1976e ac47a36 1f529ba ac47a36 1f529ba 9ab860d 1f529ba 36e014d ac47a36 6b8dbdd 1f529ba 9ab860d 1f529ba 9ab860d 6b8dbdd 1f529ba 9ab860d 1f529ba 6b8dbdd 1f529ba 9ab860d 1f529ba 6b8dbdd 1f529ba 36e014d 1f529ba 6b8dbdd 1f529ba 6b8dbdd 2ffa822 1f529ba 6b8dbdd ac47a36 1f529ba 9ab860d 2c1976e 1f529ba 36e014d 9ab860d 36e014d 9ab860d 2ffa822 9ab860d 36e014d 9ab860d 2c1976e 1f529ba 9ab860d ac47a36 2c1976e 1f529ba 2c1976e 1f529ba ac47a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
from gradio import ChatMessage
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from octotools.models.initializer import Initializer
from octotools.models.planner import Planner
from octotools.models.memory import Memory
from octotools.models.executor import Executor
from octotools.models.utils import make_json_serializable
class Solver:
def __init__(
self,
planner,
memory,
executor,
task: str,
task_description: str,
output_types: str = "base,final,direct",
index: int = 0,
verbose: bool = True,
max_steps: int = 10,
max_time: int = 60,
output_json_dir: str = "results",
root_cache_dir: str = "cache"
):
self.planner = planner
self.memory = memory
self.executor = executor
self.task = task
self.task_description = task_description
self.index = index
self.verbose = verbose
self.max_steps = max_steps
self.max_time = max_time
self.output_json_dir = output_json_dir
self.root_cache_dir = root_cache_dir
self.output_types = output_types.lower().split(',')
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
Args:
user_query (str): The text query input from the user.
user_image (Image.Image): The uploaded image from the user (PIL Image object).
messages (list): A list of ChatMessage objects to store the streamed responses.
"""
if user_image:
# # Convert PIL Image to bytes (for processing)
# img_bytes_io = io.BytesIO()
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# img_bytes = img_bytes_io.getvalue() # Get bytes
# Use image paths instead of bytes,
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
user_image.save(img_path)
else:
img_path = None
# Set query cache
_cache_dir = os.path.join(self.root_cache_dir)
self.executor.set_query_cache_dir(_cache_dir)
# Step 1: Display the received inputs
if user_image:
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}\nπΌοΈ Image Uploaded"))
else:
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}"))
yield messages
# # Step 2: Add "thinking" status while processing
# messages.append(ChatMessage(
# role="assistant",
# content="",
# metadata={"title": "β³ Thinking: Processing input..."}
# ))
# Step 3: Initialize problem-solving state
start_time = time.time()
step_count = 0
json_data = {"query": user_query, "image": "Image received as bytes"}
# Step 4: Query Analysis
query_analysis = self.planner.analyze_query(user_query, img_path)
json_data["query_analysis"] = query_analysis
messages.append(ChatMessage(role="assistant",
content=f"{query_analysis}",
metadata={"title": "π Query Analysis"}))
yield messages
# Step 5: Execution loop (similar to your step-by-step solver)
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
step_count += 1
# messages.append(ChatMessage(role="assistant",
# content=f"Generating next step...",
# metadata={"title": f"π Step {step_count}"}))
yield messages
# Generate the next step
next_step = self.planner.generate_next_step(
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
)
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# Display the step information
messages.append(ChatMessage(
role="assistant",
content=f"- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}",
metadata={"title": f"π Step {step_count}: {tool_name}"}
))
yield messages
# Handle tool execution or errors
if tool_name not in self.planner.available_tools:
messages.append(ChatMessage(
role="assistant",
content=f"β οΈ Error: Tool '{tool_name}' is not available."))
yield messages
continue
# Execute the tool command
tool_command = self.executor.generate_tool_command(
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
)
explanation, command = self.executor.extract_explanation_and_command(tool_command)
result = self.executor.execute_tool_command(tool_name, command)
result = make_json_serializable(result)
messages.append(ChatMessage(
role="assistant",
content=f"{json.dumps(result, indent=4)}",
metadata={"title": f"β
Step {step_count} Result: {tool_name}"}))
yield messages
# Step 6: Memory update and stopping condition
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
conclusion = self.planner.extract_conclusion(stop_verification)
messages.append(ChatMessage(
role="assistant",
content=f"π Step {step_count} Conclusion: {conclusion}"))
yield messages
if conclusion == 'STOP':
break
# Step 7: Generate Final Output (if needed)
if 'final' in self.output_types:
final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}"))
yield messages
if 'direct' in self.output_types:
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"πΉ Direct Output:\n{direct_output}"))
yield messages
# Step 8: Completion Message
messages.append(ChatMessage(role="assistant", content="β
Problem-solving process complete."))
yield messages
def parse_arguments():
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
parser.add_argument("--task_description", default="", help="Task description.")
parser.add_argument(
"--output_types",
default="base,final,direct",
help="Comma-separated list of required outputs (base,final,direct)"
)
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
return parser.parse_args()
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None):
"""
Wrapper function to connect the solver to Gradio.
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
"""
if api_key is None:
return [["assistant", "β οΈ Error: OpenAI API Key is required."]]
# Initialize Tools
enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# Hack enabled_tools
enabled_tools = ["Generalist_Solution_Generator_Tool"]
# Instantiate Initializer
initializer = Initializer(
enabled_tools=enabled_tools,
model_string=llm_model_engine,
api_key=api_key
)
# Instantiate Planner
planner = Planner(
llm_engine_name=llm_model_engine,
toolbox_metadata=initializer.toolbox_metadata,
available_tools=initializer.available_tools,
api_key=api_key
)
# Instantiate Memory
memory = Memory()
# Instantiate Executor
executor = Executor(
llm_engine_name=llm_model_engine,
root_cache_dir=args.root_cache_dir,
enable_signal=False,
api_key=api_key
)
# Instantiate Solver
solver = Solver(
planner=planner,
memory=memory,
executor=executor,
task=args.task,
task_description=args.task_description,
output_types=args.output_types, # Add new parameter
verbose=args.verbose,
max_steps=max_steps,
max_time=max_time,
output_json_dir=args.output_json_dir,
root_cache_dir=args.root_cache_dir
)
if solver is None:
return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]]
messages = [] # Initialize message list
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot
def main(args):
#################### Gradio Interface ####################
with gr.Blocks() as demo:
gr.Markdown("# π Chat with OctoTools: An Agentic Framework for Complex Reasoning") # Title
# gr.Markdown("[](https://octotools.github.io/)") # Title
gr.Markdown("""
**OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains.
It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage.
[Website](https://octotools.github.io/) |
[Github](https://github.com/octotools/octotools) |
[arXiv](https://github.com/octotools/octotools/assets/paper.pdf) |
[Paper](https://github.com/octotools/octotools/assets/paper.pdf) |
[Tool Cards](https://octotools.github.io/#tool-cards) |
[Example Visualizations](https://octotools.github.io/#visualization)
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
api_key = gr.Textbox(
show_label=True,
placeholder="Your API key will not be stored in any way.",
type="password",
label="OpenAI API Key",
# container=False
)
llm_model_engine = gr.Dropdown(
choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
"gpt-4o-mini", "gpt-4o-mini-2024-07-18"],
value="gpt-4o",
label="LLM Model"
)
with gr.Row():
max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
max_time = gr.Slider(value=180, minimum=60, maximum=300, step=30, label="Max Time (seconds)")
with gr.Row():
enabled_tools = gr.CheckboxGroup(
choices=all_tools,
value=all_tools,
label="Enabled Tools",
)
with gr.Column(scale=2):
user_image = gr.Image(type="pil", label="Upload an image (optional)", height=500) # Accepts multiple formats
with gr.Row():
user_query = gr.Textbox( placeholder="Type your question here...", label="Query")
with gr.Row():
run_button = gr.Button("Run") # Run button
with gr.Column(scale=3):
chatbot_output = gr.Chatbot(type="messages", label="Step-wise problem-solving output (Deep Thinking)", height=500)
# chatbot_output.like(lambda x: print(f"User liked: {x}"))
# TODO: Add actions to the buttons
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
with gr.Row():
comment_textbox = gr.Textbox(value="",
placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
label="π¬ Comment", interactive=True)
# Link button click to function
run_button.click(
fn=solve_problem_gradio,
inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools],
outputs=chatbot_output
)
#################### Gradio Interface ####################
# Launch the Gradio app
demo.launch()
if __name__ == "__main__":
args = parse_arguments()
# Manually set enabled tools
# args.enabled_tools = "Generalist_Solution_Generator_Tool"
# All tools
all_tools = [
"Generalist_Solution_Generator_Tool",
"Image_Captioner_Tool",
"Object_Detector_Tool",
"Text_Detector_Tool",
"Relevant_Patch_Zoomer_Tool",
"Python_Code_Generator_Tool",
"ArXiv_Paper_Searcher_Tool",
"Google_Search_Tool",
"Nature_News_Fetcher_Tool",
"Pubmed_Search_Tool",
"URL_Text_Extractor_Tool",
"Wikipedia_Knowledge_Searcher_Tool"
]
args.enabled_tools = ",".join(all_tools)
main(args)
|