octotools / app.py
bowenchen118's picture
Update
130d8b3
raw
history blame
13.7 kB
import gradio as gr
import datetime
import os
# Ensure logs directory exists
os.makedirs("logs", exist_ok=True)
def log_user_data(inputs, outputs):
# Create a log entry
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp} | Input: {inputs} | Output: {outputs}\n"
# Write to a log file
with open("logs/user_data.log", "a") as log_file:
log_file.write(log_entry)
return outputs
def process_input(user_input):
response = f"Hello, {user_input}!"
log_user_data(user_input, response)
return response
demo = gr.Interface(fn=process_input, inputs="text", outputs="text")
demo.launch()
# import os
# import sys
# import json
# import argparse
# import time
# import io
# import uuid
# from PIL import Image
# from typing import List, Dict, Any, Iterator
# import gradio as gr
# # Add the project root to the Python path
# current_dir = os.path.dirname(os.path.abspath(__file__))
# project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
# sys.path.insert(0, project_root)
# from opentools.models.initializer import Initializer
# from opentools.models.planner import Planner
# from opentools.models.memory import Memory
# from opentools.models.executor import Executor
# from opentools.models.utlis import make_json_serializable
# solver = None
# class ChatMessage:
# def __init__(self, role: str, content: str, metadata: dict = None):
# self.role = role
# self.content = content
# self.metadata = metadata or {}
# class Solver:
# def __init__(
# self,
# planner,
# memory,
# executor,
# task: str,
# task_description: str,
# output_types: str = "base,final,direct",
# index: int = 0,
# verbose: bool = True,
# max_steps: int = 10,
# max_time: int = 60,
# output_json_dir: str = "results",
# root_cache_dir: str = "cache"
# ):
# self.planner = planner
# self.memory = memory
# self.executor = executor
# self.task = task
# self.task_description = task_description
# self.index = index
# self.verbose = verbose
# self.max_steps = max_steps
# self.max_time = max_time
# self.output_json_dir = output_json_dir
# self.root_cache_dir = root_cache_dir
# self.output_types = output_types.lower().split(',')
# assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# # self.benchmark_data = self.load_benchmark_data()
# def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
# """
# Streams intermediate thoughts and final responses for the problem-solving process based on user input.
# Args:
# user_query (str): The text query input from the user.
# user_image (Image.Image): The uploaded image from the user (PIL Image object).
# messages (list): A list of ChatMessage objects to store the streamed responses.
# """
# if user_image:
# # # Convert PIL Image to bytes (for processing)
# # img_bytes_io = io.BytesIO()
# # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# # img_bytes = img_bytes_io.getvalue() # Get bytes
# # Use image paths instead of bytes,
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
# user_image.save(img_path)
# else:
# img_path = None
# # Set query cache
# _cache_dir = os.path.join(self.root_cache_dir)
# self.executor.set_query_cache_dir(_cache_dir)
# # Step 1: Display the received inputs
# if user_image:
# messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
# else:
# messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
# yield messages
# # Step 2: Add "thinking" status while processing
# messages.append(ChatMessage(
# role="assistant",
# content="",
# metadata={"title": "⏳ Thinking: Processing input..."}
# ))
# # Step 3: Initialize problem-solving state
# start_time = time.time()
# step_count = 0
# json_data = {"query": user_query, "image": "Image received as bytes"}
# # Step 4: Query Analysis
# import pdb; pdb.set_trace()
# query_analysis = self.planner.analyze_query(user_query, img_path)
# json_data["query_analysis"] = query_analysis
# messages.append(ChatMessage(role="assistant", content=f"πŸ” Query Analysis:\n{query_analysis}"))
# yield messages
# # Step 5: Execution loop (similar to your step-by-step solver)
# while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
# step_count += 1
# messages.append(ChatMessage(role="assistant", content=f"πŸ”„ Step {step_count}: Generating next step..."))
# yield messages
# # Generate the next step
# next_step = self.planner.generate_next_step(
# user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
# )
# context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# # Display the step information
# messages.append(ChatMessage(
# role="assistant",
# content=f"πŸ“Œ Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
# ))
# yield messages
# # Handle tool execution or errors
# if tool_name not in self.planner.available_tools:
# messages.append(ChatMessage(role="assistant", content=f"⚠️ Error: Tool '{tool_name}' is not available."))
# yield messages
# continue
# # Execute the tool command
# tool_command = self.executor.generate_tool_command(
# user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
# )
# explanation, command = self.executor.extract_explanation_and_command(tool_command)
# result = self.executor.execute_tool_command(tool_name, command)
# result = make_json_serializable(result)
# messages.append(ChatMessage(role="assistant", content=f"βœ… Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
# yield messages
# # Step 6: Memory update and stopping condition
# self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
# stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
# conclusion = self.planner.extract_conclusion(stop_verification)
# messages.append(ChatMessage(role="assistant", content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
# yield messages
# if conclusion == 'STOP':
# break
# # Step 7: Generate Final Output (if needed)
# if 'final' in self.output_types:
# final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
# yield messages
# if 'direct' in self.output_types:
# direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
# yield messages
# # Step 8: Completion Message
# messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
# yield messages
# def parse_arguments():
# parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
# parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
# parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
# parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
# parser.add_argument("--task", default="minitoolbench", help="Task to run.")
# parser.add_argument("--task_description", default="", help="Task description.")
# parser.add_argument(
# "--output_types",
# default="base,final,direct",
# help="Comma-separated list of required outputs (base,final,direct)"
# )
# parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
# parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
# parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
# parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
# parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
# parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
# return parser.parse_args()
# def solve_problem_gradio(user_query, user_image):
# """
# Wrapper function to connect the solver to Gradio.
# Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
# """
# global solver # Ensure we're using the globally defined solver
# if solver is None:
# return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
# messages = [] # Initialize message list
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
# def main(args):
# global solver
# # Initialize Tools
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# # Instantiate Initializer
# initializer = Initializer(
# enabled_tools=enabled_tools,
# model_string=args.llm_engine_name
# )
# # Instantiate Planner
# planner = Planner(
# llm_engine_name=args.llm_engine_name,
# toolbox_metadata=initializer.toolbox_metadata,
# available_tools=initializer.available_tools
# )
# # Instantiate Memory
# memory = Memory()
# # Instantiate Executor
# executor = Executor(
# llm_engine_name=args.llm_engine_name,
# root_cache_dir=args.root_cache_dir,
# enable_signal=False
# )
# # Instantiate Solver
# solver = Solver(
# planner=planner,
# memory=memory,
# executor=executor,
# task=args.task,
# task_description=args.task_description,
# output_types=args.output_types, # Add new parameter
# verbose=args.verbose,
# max_steps=args.max_steps,
# max_time=args.max_time,
# output_json_dir=args.output_json_dir,
# root_cache_dir=args.root_cache_dir
# )
# # Test Inputs
# # user_query = "How many balls are there in the image?"
# # user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
# # # Load the image as a PIL object
# # user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
# # print("\n=== Starting Problem Solving ===\n")
# # messages = []
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # for message in message_batch:
# # print(f"{message.role}: {message.content}")
# # messages = []
# # solver.stream_solve_user_problem(user_query, user_image, messages)
# # def solve_problem_stream(user_query, user_image):
# # messages = [] # Ensure it's a list of [role, content] pairs
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # yield message_batch # Stream messages correctly in tuple format
# # solve_problem_stream(user_query, user_image)
# # ========== Gradio Interface ==========
# with gr.Blocks() as demo:
# gr.Markdown("# 🧠 OctoTools AI Solver") # Title
# with gr.Row():
# user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
# user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
# run_button = gr.Button("Run") # Run button
# chatbot_output = gr.Chatbot(label="Problem-Solving Output")
# # Link button click to function
# run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
# # Launch the Gradio app
# demo.launch()
# if __name__ == "__main__":
# args = parse_arguments()
# main(args)