api-test / app.py
OjciecTadeusz's picture
Update app.py
97b4be5 verified
raw
history blame
4.36 kB
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(response_text)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
def chat_interface(message, chat_history):
if message.strip() == "":
return chat_history
try:
# Format the message history in the OpenAI style
messages = []
for msg in chat_history:
messages.append({"role": "user", "content": msg[0]})
if msg[1] is not None:
messages.append({"role": "assistant", "content": msg[1]})
# Add the current message
messages.append({"role": "user", "content": message})
# Get response
response = generate_response(messages)
# Update history in the new format
chat_history.append((message, response))
return chat_history
except Exception as e:
chat_history.append((message, f"Error: {str(e)}"))
return chat_history
# Create Gradio interface with new message format
demo = gr.ChatInterface(
fn=chat_interface,
title="Qwen2.5-Coder-32B Chat",
description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API",
examples=["Hello! Can you help me with coding?",
"Write a simple Python function to calculate factorial"],
retry_btn="Retry",
undo_btn="Undo last message",
clear_btn="Clear conversation",
)
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)