api-test / app.py
OjciecTadeusz's picture
Update app.py
dc3ffec verified
raw
history blame
4.09 kB
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(response_text)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
def chat_interface(message, chat_history):
if message.strip() == "":
return chat_history
try:
messages = []
for msg in chat_history:
messages.append({"role": "user", "content": msg[0]})
if msg[1] is not None:
messages.append({"role": "assistant", "content": msg[1]})
messages.append({"role": "user", "content": message})
response = generate_response(messages)
chat_history.append((message, response))
return chat_history
except Exception as e:
chat_history.append((message, f"Error: {str(e)}"))
return chat_history
# Create Gradio interface
demo = gr.Chatbot(
chat_interface,
title="Qwen2.5-Coder-32B Chat",
description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API",
examples=[
"Hello! Can you help me with coding?",
"Write a simple Python function to calculate factorial"
]
)
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)