Spaces:
Runtime error
Runtime error
File size: 2,520 Bytes
4b4d3c0 15103fe 4b4d3c0 15103fe 4b4d3c0 f809eee 15103fe f809eee 4b4d3c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# Function to load the pre-trained model
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentiment_pipeline = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
return sentiment_pipeline
# Streamlit app
st.title("Basic Sentiment Analysis App")
st.write("Enter a text and select a pre-trained model to get the sentiment analysis.")
# Input text
text = st.text_input("Enter your text:")
# Model selection
model_options = {
"distilbert-base-uncased-finetuned-sst-2-english": {
"labels": ["NEGATIVE", "POSITIVE"],
"description": "This model classifies text into positive or negative sentiment. It is based on DistilBERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
},
"textattack/bert-base-uncased-SST-2": {
"labels": ["LABEL_0", "LABEL_1"],
"description": "This model classifies text into positive(LABEL_1) or negative(LABEL_0) sentiment. It is based on BERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
},
"cardiffnlp/twitter-roberta-base-sentiment": {
"labels": ["LABEL_0", "LABEL_1", "LABEL_2"],
"description": "This model classifies tweets into negative (LABEL_0), neutral(LABEL_1), or positive(LABEL_2) sentiment. It is based on RoBERTa and fine-tuned on a large dataset of tweets.",
},
}
selected_model = st.selectbox("Choose a pre-trained model:", model_options)
st.write("### Model Information")
st.write(f"**Labels:** {', '.join(model_options[selected_model]['labels'])}")
st.write(f"**Description:** {model_options[selected_model]['description']}")
# Load the model and perform sentiment analysis
if st.button("Analyze"):
if not text:
st.write("Please enter a text.")
else:
with st.spinner("Analyzing sentiment..."):
sentiment_pipeline = load_model(selected_model)
result = sentiment_pipeline(text)
st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
if result[0]['label'] == 'POSITIVE':
st.balloons()
elif result[0]['label'] in ['NEGATIVE', 'LABEL_0'] and result[0]['score']> 0.9:
st.error("Hater detected.")
else:
st.write("Enter a text and click 'Analyze' to perform sentiment analysis.")
|