Spaces:
Sleeping
Sleeping
Commit
·
1d61ce5
1
Parent(s):
8df2cd3
v1.2.1 translate model done
Browse files
app.py
CHANGED
@@ -1,51 +1,60 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
-
model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
|
8 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
9 |
-
model.to(device)
|
10 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
11 |
|
12 |
-
|
13 |
-
src_text = prefix + "Съешь ещё этих мягких французских булок."
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
generated_tokens = model.generate(**input_ids.to(device))
|
19 |
|
20 |
-
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
21 |
-
print(result)
|
22 |
-
st.write(result[0])
|
23 |
-
# 再吃这些法国的甜蜜的面包。
|
24 |
-
# import streamlit as st
|
25 |
-
# from transformers import pipeline
|
26 |
-
# import torch
|
27 |
-
# import scipy
|
28 |
|
29 |
-
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# st.write("### Summary:")
|
49 |
-
# st.write(summary)
|
50 |
-
# else:
|
51 |
-
# st.error("Please enter an article to summarize.")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import scipy
|
6 |
+
|
7 |
+
st.title("FinalProject")
|
8 |
+
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_summarization_model():
|
12 |
+
print("Loading summarization model...")
|
13 |
+
return pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
+
|
15 |
+
summarizer = load_summarization_model()
|
16 |
+
|
17 |
+
ARTICLE = st.text_area("Enter the article to summarize:", height=300)
|
18 |
|
19 |
+
max_length = st.number_input("Enter max length for summary:", min_value=10, max_value=500, value=130)
|
20 |
+
min_length = st.number_input("Enter min length for summary:", min_value=5, max_value=450, value=30)
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
device = 'cpu'
|
|
|
24 |
|
25 |
+
@st.cache_resource
|
26 |
+
def load_translation_model():
|
27 |
+
model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
|
28 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
29 |
+
model.to(device)
|
30 |
+
return model, T5Tokenizer.from_pretrained(model_name)
|
31 |
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
model, tokenizer = load_translation_model()
|
35 |
|
36 |
|
37 |
+
if st.button("Summarize"):
|
38 |
+
if ARTICLE.strip():
|
39 |
+
answer = summarizer(ARTICLE, max_length=int(max_length), min_length=int(min_length), do_sample=False)
|
40 |
+
summary = answer[0]['summary_text']
|
41 |
+
st.write("### Summary:")
|
42 |
+
st.write(summary)
|
43 |
+
else:
|
44 |
+
st.error("Please enter an article to summarize.")
|
45 |
|
46 |
+
target_language = st.selectbox("Choose target language for translation:", ["ru", "zh"])
|
47 |
|
48 |
+
if st.button("Translate"):
|
49 |
+
if ARTICLE.strip():
|
50 |
+
prefix = f"translate to {target_language}: "
|
51 |
+
src_text = prefix + ARTICLE
|
52 |
|
53 |
+
input_ids = tokenizer(src_text, return_tensors="pt")
|
54 |
+
generated_tokens = model.generate(**input_ids.to(device))
|
55 |
+
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
56 |
|
57 |
+
st.write(f"### Translation ({target_language.upper()}):")
|
58 |
+
st.write(result[0])
|
59 |
+
else:
|
60 |
+
st.error("Please enter an article to translate.")
|
|
|
|
|
|
|
|