OmarElgammal1 commited on
Commit
6c83f67
·
1 Parent(s): fcc6bc3
Files changed (1) hide show
  1. app.py +1 -149
app.py CHANGED
@@ -1,151 +1,3 @@
1
- # import gradio as gr
2
- # import numpy as np
3
- # import random
4
- # from diffusers import DiffusionPipeline
5
- # import torch
6
-
7
- # device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- # if torch.cuda.is_available():
10
- # torch.cuda.max_memory_allocated(device=device)
11
- # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- # pipe.enable_xformers_memory_efficient_attention()
13
- # pipe = pipe.to(device)
14
- # else:
15
- # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- # pipe = pipe.to(device)
17
-
18
- # MAX_SEED = np.iinfo(np.int32).max
19
- # MAX_IMAGE_SIZE = 1024
20
-
21
- # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- # if randomize_seed:
24
- # seed = random.randint(0, MAX_SEED)
25
-
26
- # generator = torch.Generator().manual_seed(seed)
27
-
28
- # image = pipe(
29
- # prompt = prompt,
30
- # negative_prompt = negative_prompt,
31
- # guidance_scale = guidance_scale,
32
- # num_inference_steps = num_inference_steps,
33
- # width = width,
34
- # height = height,
35
- # generator = generator
36
- # ).images[0]
37
-
38
- # return image
39
-
40
- # examples = [
41
- # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- # "An astronaut riding a green horse",
43
- # "A delicious ceviche cheesecake slice",
44
- # ]
45
-
46
- # css="""
47
- # #col-container {
48
- # margin: 0 auto;
49
- # max-width: 520px;
50
- # }
51
- # """
52
-
53
- # if torch.cuda.is_available():
54
- # power_device = "GPU"
55
- # else:
56
- # power_device = "CPU"
57
-
58
- # with gr.Blocks(css=css) as demo:
59
-
60
- # with gr.Column(elem_id="col-container"):
61
- # gr.Markdown(f"""
62
- # # Text-to-Image Gradio Template
63
- # Currently running on {power_device}.
64
- # """)
65
-
66
- # with gr.Row():
67
-
68
- # prompt = gr.Text(
69
- # label="Prompt",
70
- # show_label=False,
71
- # max_lines=1,
72
- # placeholder="Enter your prompt",
73
- # container=False,
74
- # )
75
-
76
- # run_button = gr.Button("Run", scale=0)
77
-
78
- # result = gr.Image(label="Result", show_label=False)
79
-
80
- # with gr.Accordion("Advanced Settings", open=False):
81
-
82
- # negative_prompt = gr.Text(
83
- # label="Negative prompt",
84
- # max_lines=1,
85
- # placeholder="Enter a negative prompt",
86
- # visible=False,
87
- # )
88
-
89
- # seed = gr.Slider(
90
- # label="Seed",
91
- # minimum=0,
92
- # maximum=MAX_SEED,
93
- # step=1,
94
- # value=0,
95
- # )
96
-
97
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- # with gr.Row():
100
-
101
- # width = gr.Slider(
102
- # label="Width",
103
- # minimum=256,
104
- # maximum=MAX_IMAGE_SIZE,
105
- # step=32,
106
- # value=512,
107
- # )
108
-
109
- # height = gr.Slider(
110
- # label="Height",
111
- # minimum=256,
112
- # maximum=MAX_IMAGE_SIZE,
113
- # step=32,
114
- # value=512,
115
- # )
116
-
117
- # with gr.Row():
118
-
119
- # guidance_scale = gr.Slider(
120
- # label="Guidance scale",
121
- # minimum=0.0,
122
- # maximum=10.0,
123
- # step=0.1,
124
- # value=0.0,
125
- # )
126
-
127
- # num_inference_steps = gr.Slider(
128
- # label="Number of inference steps",
129
- # minimum=1,
130
- # maximum=12,
131
- # step=1,
132
- # value=2,
133
- # )
134
-
135
- # gr.Examples(
136
- # examples = examples,
137
- # inputs = [prompt]
138
- # )
139
-
140
- # run_button.click(
141
- # fn = infer,
142
- # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- # outputs = [result]
144
- # )
145
-
146
- # demo.queue().launch()
147
-
148
-
149
  import gradio as gr
150
  import numpy as np
151
  import random
@@ -230,7 +82,7 @@ with gr.Blocks(css=css) as demo:
230
 
231
  run_button = gr.Button("Run", scale=0)
232
 
233
- sentiment_text = gr.Text(label="Sentiment:", show_label=True, value="", editable=False)
234
  result = gr.Image(label="Result", show_label=False)
235
 
236
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
82
 
83
  run_button = gr.Button("Run", scale=0)
84
 
85
+ sentiment_text = gr.Text(label="Sentiment:", show_label=True, value="")
86
  result = gr.Image(label="Result", show_label=False)
87
 
88
  with gr.Accordion("Advanced Settings", open=False):