Commit
·
d3b509b
1
Parent(s):
6c83f67
Version 2.1
Browse files
app.py
CHANGED
@@ -1,151 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
-
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
|
9 |
-
if torch.cuda.is_available():
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
from transformers import pipeline
|
41 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
42 |
-
|
43 |
def analyze_sentiment(text):
|
44 |
results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
|
45 |
sentiment = max(results['labels'], key=results['scores'].__getitem__)
|
46 |
return sentiment
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
]
|
53 |
-
|
54 |
-
css="""
|
55 |
-
#col-container {
|
56 |
-
margin: 0 auto;
|
57 |
-
max-width: 520px;
|
58 |
-
}
|
59 |
-
"""
|
60 |
-
|
61 |
-
if torch.cuda.is_available():
|
62 |
-
power_device = "GPU"
|
63 |
-
else:
|
64 |
-
power_device = "CPU"
|
65 |
-
|
66 |
-
with gr.Blocks(css=css) as demo:
|
67 |
-
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(f"""
|
70 |
-
# Text-to-Image Gradio Template
|
71 |
-
Currently running on {power_device}.
|
72 |
-
""")
|
73 |
-
|
74 |
-
with gr.Row():
|
75 |
-
prompt = gr.Text(
|
76 |
-
label="Prompt",
|
77 |
-
show_label=False,
|
78 |
-
max_lines=1,
|
79 |
-
placeholder="Enter your prompt",
|
80 |
-
container=False,
|
81 |
-
)
|
82 |
-
|
83 |
-
run_button = gr.Button("Run", scale=0)
|
84 |
-
|
85 |
-
sentiment_text = gr.Text(label="Sentiment:", show_label=True, value="")
|
86 |
-
result = gr.Image(label="Result", show_label=False)
|
87 |
-
|
88 |
-
with gr.Accordion("Advanced Settings", open=False):
|
89 |
-
negative_prompt = gr.Text(
|
90 |
-
label="Negative prompt",
|
91 |
-
max_lines=1,
|
92 |
-
placeholder="Enter a negative prompt",
|
93 |
-
visible=False,
|
94 |
-
)
|
95 |
-
|
96 |
-
seed = gr.Slider(
|
97 |
-
label="Seed",
|
98 |
-
minimum=0,
|
99 |
-
maximum=MAX_SEED,
|
100 |
-
step=1,
|
101 |
-
value=0,
|
102 |
-
)
|
103 |
-
|
104 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
width = gr.Slider(
|
108 |
-
label="Width",
|
109 |
-
minimum=256,
|
110 |
-
maximum=MAX_IMAGE_SIZE,
|
111 |
-
step=32,
|
112 |
-
value=512,
|
113 |
-
)
|
114 |
-
|
115 |
-
height = gr.Slider(
|
116 |
-
label="Height",
|
117 |
-
minimum=256,
|
118 |
-
maximum=MAX_IMAGE_SIZE,
|
119 |
-
step=32,
|
120 |
-
value=512,
|
121 |
-
)
|
122 |
-
|
123 |
-
with gr.Row():
|
124 |
-
guidance_scale = gr.Slider(
|
125 |
-
label="Guidance scale",
|
126 |
-
minimum=0.0,
|
127 |
-
maximum=10.0,
|
128 |
-
step=0.1,
|
129 |
-
value=0.0,
|
130 |
-
)
|
131 |
-
|
132 |
-
num_inference_steps = gr.Slider(
|
133 |
-
label="Number of inference steps",
|
134 |
-
minimum=1,
|
135 |
-
maximum=12,
|
136 |
-
step=1,
|
137 |
-
value=2,
|
138 |
-
)
|
139 |
-
|
140 |
-
gr.Examples(
|
141 |
-
examples = examples,
|
142 |
-
inputs = [prompt]
|
143 |
-
)
|
144 |
-
|
145 |
-
run_button.click(
|
146 |
-
fn = infer,
|
147 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
148 |
-
outputs = [result, sentiment_text] # Update outputs to include sentiment text
|
149 |
-
)
|
150 |
-
|
151 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def load_model(selected_model):
|
6 |
+
with open(selected_model, 'rb') as file:
|
7 |
+
loaded_model = pickle.load(file)
|
8 |
+
return loaded_model
|
9 |
+
|
10 |
+
def predict(model, text):
|
11 |
+
encoder = {
|
12 |
+
0:'assets/negative.jpeg',
|
13 |
+
1:'assets/neutral.jpeg',
|
14 |
+
2:'assets/positive.jpeg'
|
15 |
+
}
|
16 |
+
selected_model = None
|
17 |
+
with open('vectorizer.pkl', 'rb') as file:
|
18 |
+
vectorizer = pickle.load(file)
|
19 |
+
|
20 |
+
if 'Random Forest' == model:
|
21 |
+
selected_model = "models/rf_twitter.pkl"
|
22 |
+
elif 'Logistic Regression' == model:
|
23 |
+
selected_model = "models/lg_twitter.pkl"
|
24 |
+
elif 'Naive Bayes' == model:
|
25 |
+
selected_model = "models/nb_twitter.pkl"
|
26 |
+
elif 'Decision Tree' == model:
|
27 |
+
selected_model = "models/dt_twitter.pkl"
|
28 |
+
elif 'KNN' == model:
|
29 |
+
selected_model = "models/knn_twitter.pkl"
|
30 |
+
else:
|
31 |
+
selected_model = "models/lg_twitter.pkl"
|
32 |
+
loaded_model = load_model(selected_model)
|
33 |
+
text_vector = vectorizer.transform([text])
|
34 |
+
prediction = loaded_model.predict(text_vector)
|
35 |
+
return encoder[prediction[0]]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
|
|
38 |
def analyze_sentiment(text):
|
39 |
results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
|
40 |
sentiment = max(results['labels'], key=results['scores'].__getitem__)
|
41 |
return sentiment
|
42 |
|
43 |
+
# models = gr.Radio(['Random Forest', 'Logistic Regression','Naive Bayes','Decision Tree','KNN'], label="Choose model")
|
44 |
+
# demo = gr.Interface(fn=predict, inputs=[models,"text"], outputs="image", title="Sentiment Analysis")
|
45 |
+
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="text", title="Sentiment Analysis")
|
46 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|