Spaces:
Sleeping
Sleeping
File size: 10,427 Bytes
cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f 26a0d19 cb9126f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from typing import Tuple
css = '''
.gradio-container{max-width: 575px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
DESCRIPTIONXX = """## LENNOX TEXT 2 IMAGE🥠"""
examples = [
"Neon-lit futuristic city at night, towering skyscrapers, flying cars, and glowing billboards. People in cyberpunk attire walk below a starry sky.",
"Mystical forest with glowing plants, bioluminescent trees, and magical creatures like fairies and fireflies. Mist and soft light create a dreamlike feel.",
"Medieval knight in detailed armor on a cliff, sword in hand, sunset light highlighting a kingdom and castle in the background.",
"Modern, minimalist living room with soft gray and wood tones, large window with natural light, a simple couch, and potted plants for a cozy vibe.",
"Majestic lion on a rock in the African savanna at sunrise, mane blowing in the wind, with acacia trees and golden grass under warm light."
]
MODEL_OPTIONS = {
"LENNOX-AI V2.0": "SG161222/RealVisXL_V5.0_Lightning",
"LENNOX-AI V1.0": "SG161222/RealVisXL_V4.0_Lightning",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def load_and_prepare_model(model_id):
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
if USE_TORCH_COMPILE:
pipe.compile()
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
MAX_SEED = np.iinfo(np.int32).max
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60, enable_queue=True)
def generate(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = DEFAULT_STYLE_NAME,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
model_choice = gr.Dropdown(
label="Model Selection⬇️",
choices=list(MODEL_OPTIONS.keys()),
value="LENNOX-AI V2.0"
)
with gr.Accordion("Advanced options", open=False, visible=False):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=5,
step=1,
value=1,
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=60,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
#gr.Markdown("### Image Gallery")
#predefined_gallery = gr.Gallery(label="Image Gallery", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
🖌️ Image Generation by Omindu Dissanayaka: Using LENNOX-AI V2.0 and LENNOX-AI V1.0 models for high-quality images. This demo space showcases image generation with the Stable Diffusion XL model variants, available for experimenting with different styles and models.
</div>
"""
)
gr.Markdown(
"""
<div style="text-align: justify;">
🎨 Explore the demo space for Stable Diffusion XL, designed by Omindu Dissanayaka. Generate images with diverse styles and models for higher-quality results. Experiment with sample prompts to create unique, high-quality images.
</div>
"""
)
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Disclaimer: Users are responsible for ensuring that generated content complies with ethical standards.
</div>
"""
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(show_api=True) |