Spaces:
Sleeping
Sleeping
File size: 4,673 Bytes
48421ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from fastapi import FastAPI, Request, BackgroundTasks
import json
import io
from openai import OpenAI
from supabase import create_client
from typing import List, Dict, Any
import asyncio
import logging
from datetime import datetime
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
client = OpenAI() # Initialize your OpenAI client with proper credentials
supabase = create_client("YOUR_SUPABASE_URL", "YOUR_SUPABASE_KEY") # Initialize Supabase client
async def process_batch_job(dataset: Dict[str, Any], batch_job_id: str):
"""
Background task to process the batch job
"""
try:
logger.info(f"Starting batch processing for job {batch_job_id}")
system_prompt = '''
Your goal is to extract movie categories from movie descriptions, as well as a 1-sentence summary for these movies.
You will be provided with a movie description, and you will output a json object containing the following information:
{
categories: string[] // Array of categories based on the movie description,
summary: string // 1-sentence summary of the movie based on the movie description
}
Categories refer to the genre or type of the movie, like "action", "romance", "comedy", etc. Keep category names simple and use only lower case letters.
Movies can have several categories, but try to keep it under 3-4. Only mention the categories that are the most obvious based on the description.
'''
openai_tasks = []
for ds in dataset.get('data'):
id = ds.get('imdb_id')
description = ds.get('Description')
task = {
"custom_id": f"task-{id}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": "gpt-4o-mini",
"temperature": 0.1,
"response_format": {
"type": "json_object"
},
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": description
}
]
}
}
openai_tasks.append(task)
# Create batch file
json_obj = io.BytesIO()
for obj in openai_tasks:
json_obj.write((json.dumps(obj) + '\n').encode('utf-8'))
batch_file = client.files.create(
file=json_obj,
purpose="batch"
)
# Create batch job
batch_job = client.batches.create(
input_file_id=batch_file.id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
# Update status in Supabase
supabase.table("batch_processing_details").update({
"batch_job_status": True,
"completed_at": datetime.utcnow().isoformat()
}).match({"batch_job_id": batch_job_id}).execute()
logger.info(f"Batch job {batch_job_id} processed successfully")
except Exception as e:
logger.error(f"Error processing batch job {batch_job_id}: {str(e)}")
# Update status with error
supabase.table("batch_processing_details").update({
"batch_job_status": False,
"error": str(e),
"completed_at": datetime.utcnow().isoformat()
}).eq({"batch_job_id": batch_job_id}).execute()
@app.post("/test/v1")
async def testv1(request: Request, background_tasks: BackgroundTasks):
try:
dataset = await request.json()
# Create initial batch job record
save_data = {
'batch_job_id': f"batch_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}",
"batch_job_status": False,
"created_at": datetime.utcnow().isoformat()
}
response = (
supabase.table("batch_processing_details")
.insert(save_data)
.execute()
)
# Add processing to background tasks
background_tasks.add_task(process_batch_job, dataset, save_data['batch_job_id'])
return {'data': 'Batch job is scheduled!', 'batch_job_id': save_data['batch_job_id']},
except Exception as e:
return {'error': str(e)}
|