Spaces:
Runtime error
Runtime error
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import re | |
from transformers import PretrainedConfig, Blip2PreTrainedModel, Blip2Config, Blip2QFormerModel | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {"mm_projector_type": 'identity'} | |
class SimpleResBlock(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.pre_norm = nn.LayerNorm(channels) | |
self.proj = nn.Sequential( | |
nn.Linear(channels, channels), | |
nn.GELU(), | |
nn.Linear(channels, channels) | |
) | |
def forward(self, x): | |
x = self.pre_norm(x) | |
return x + self.proj(x) | |
# def build_vision_projector(config, delay_load=False, **kwargs): | |
# projector_type = getattr(config, 'mm_projector_type', 'linear') | |
# | |
# if projector_type == 'linear': | |
# return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
# | |
# mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
# if mlp_gelu_match: | |
# mlp_depth = int(mlp_gelu_match.group(1)) | |
# modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
# for _ in range(1, mlp_depth): | |
# modules.append(nn.GELU()) | |
# modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
# return nn.Sequential(*modules) | |
# | |
# if projector_type == 'identity': | |
# return IdentityMap() | |
# | |
# raise ValueError(f'Unknown projector type: {projector_type}') | |
class Blip2Model(Blip2PreTrainedModel): | |
def __init__(self, config: Blip2Config): | |
super().__init__(config) | |
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) | |
self.qformer = Blip2QFormerModel(config.qformer_config) | |
# self.proj = nn.Linear(config.mm_hidden_size, config.hidden_size) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)] | |
self.proj = nn.Sequential(*modules) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
r""" | |
Returns: | |
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`): | |
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that | |
contains the image features, the pooled image features and the hidden states if | |
`output_hidden_states=True`. | |
Examples: | |
```python | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import Blip2Processor, Blip2Model | |
>>> device = "cuda" if torch.cuda.is_available() else "cpu" | |
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) | |
>>> model.to(device) # doctest: +IGNORE_RESULT | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) | |
>>> qformer_outputs = model.get_qformer_features(**inputs) | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# vision_outputs = self.vision_model( | |
# pixel_values=pixel_values, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# | |
# image_embeds = vision_outputs[0] | |
# image_embeds = self.proj(pixel_values) | |
image_embeds = pixel_values | |
# print('pixel_values to proj', pixel_values.shape, image_embeds.shape) | |
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention | |
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_outputs = self.qformer( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
).last_hidden_state | |
# print('qformer out', query_outputs.shape) | |
query_outputs = self.proj(query_outputs) | |
return query_outputs | |
def qformer_config_template(config, projector_type): | |
pattern = r"qformer(\d+)_(\d+)" | |
match = re.search(pattern, projector_type) | |
num_hidden_layers = int(match.group(1)) | |
num_query_tokens = int(match.group(2)) | |
qformer_config = type('Blip2Config', (PretrainedConfig,), { | |
"initializer_factor": 1.0, | |
"initializer_range": 0.02, | |
"model_type": "blip-2", | |
"num_query_tokens": num_query_tokens, | |
"hidden_size": config.hidden_size, | |
"mm_hidden_size": config.mm_hidden_size, | |
"qformer_config": type('qformer_config', (PretrainedConfig,), { | |
"_name_or_path": "", | |
"add_cross_attention": False, | |
"architectures": None, | |
"attention_probs_dropout_prob": 0.0, | |
"bad_words_ids": None, | |
"begin_suppress_tokens": None, | |
"bos_token_id": None, | |
"chunk_size_feed_forward": 0, | |
"classifier_dropout": None, | |
"cross_attention_frequency": 1, | |
"cross_attention_hidden_size": None, | |
"decoder_start_token_id": None, | |
"diversity_penalty": 0.0, | |
"do_sample": False, | |
"early_stopping": False, | |
"encoder_hidden_size": config.mm_hidden_size, | |
"encoder_no_repeat_ngram_size": 0, | |
"eos_token_id": None, | |
"exponential_decay_length_penalty": None, | |
"finetuning_task": None, | |
"forced_bos_token_id": None, | |
"forced_eos_token_id": None, | |
"hidden_act": "gelu", | |
"hidden_dropout_prob": 0.0, | |
"hidden_size": config.mm_hidden_size, | |
"id2label": { | |
"0": "LABEL_0", | |
"1": "LABEL_1" | |
}, | |
"initializer_range": 0.02, | |
"intermediate_size": config.mm_hidden_size * 4, | |
"is_decoder": False, | |
"is_encoder_decoder": False, | |
"label2id": { | |
"LABEL_0": 0, | |
"LABEL_1": 1 | |
}, | |
"layer_norm_eps": 1e-12, | |
"length_penalty": 1.0, | |
"max_length": 20, | |
"max_position_embeddings": 512, | |
"min_length": 0, | |
"model_type": "blip_2_qformer", | |
"no_repeat_ngram_size": 0, | |
"num_attention_heads": 32, | |
"num_beam_groups": 1, | |
"num_beams": 1, | |
"num_hidden_layers": num_hidden_layers, | |
"num_return_sequences": 1, | |
"output_attentions": False, | |
"output_hidden_states": False, | |
"output_scores": False, | |
"pad_token_id": 0, | |
"position_embedding_type": "absolute", | |
"prefix": None, | |
"problem_type": None, | |
"pruned_heads": {}, | |
"remove_invalid_values": False, | |
"repetition_penalty": 1.0, | |
"return_dict": True, | |
"return_dict_in_generate": False, | |
"sep_token_id": None, | |
"suppress_tokens": None, | |
"task_specific_params": None, | |
"temperature": 1.0, | |
"tf_legacy_loss": False, | |
"tie_encoder_decoder": False, | |
"tie_word_embeddings": True, | |
"tokenizer_class": None, | |
"top_k": 50, | |
"top_p": 1.0, | |
"torch_dtype": None, | |
"torchscript": False, | |
"transformers_version": "4.27.0.dev0", | |
"typical_p": 1.0, | |
"use_bfloat16": False, | |
"vocab_size": 30522 | |
})() | |
})() | |
return qformer_config | |
def build_vision_projector(config, delay_load=False, **kwargs): | |
projector_type = getattr(config, 'mm_projector_type', 'linear') | |
if projector_type == 'linear': | |
return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
elif projector_type == 'identity': | |
return IdentityMap() | |
elif projector_type.startswith('qformer'): # qformer2_64 | |
qformer_config = qformer_config_template(config, projector_type) | |
return Blip2Model(qformer_config) | |
else: | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
return nn.Sequential(*modules) | |
raise ValueError(f'Unknown projector type: {projector_type}') |