Mixtral-TLDR / app.py
Omnibus's picture
Update app.py
da0e32f
raw
history blame
5.95 kB
import gradio as gr
#import urllib.request
#import requests
#import bs4
#import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def parse_action(string: str):
print("PARSING:")
print(string)
assert string.startswith("action:")
idx = string.find("action_input=")
print(idx)
if idx == -1:
print ("idx == -1")
print (string[8:])
return string[8:], None
print ("last return:")
print (string[8 : idx - 1])
print (string[idx + 13 :].strip("'").strip('"'))
return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
purpose,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose=purpose
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
purpose=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
purpose="Compile report",
knowledge=new_history,
history="All data has been recieved.",
)
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(inp,history,data=None,file=None):
#file = None
history = [(inp,"Working on it...")] if not history else history
yield "",history
if file !=None:
try:
with open(file,"r") as f:
zz=f.readlines()
f.close
print (zz)
except Exception as e:
print (e)
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=0
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
rawp = compress_data(c,inp,out)
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.append(("",rawp))
yield "", history
#################################
'''
examples =[
"what are todays breaking news stories?",
"find the most popular model that I can use to generate an image by providing a text prompt",
"return the top 10 models that I can use to identify objects in images",
"which models have the most likes from each category?",
]
additional_inputs=[
gr.File(),
]
with gr.Blocks() as app:
with gr.Row():
gr.ChatInterface(
fn=summarize,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="<center>Mixtral 8x7B TLDR</center>",
description="<center>Summarize Lengthy data with<br>Mixtral 8x7B",
examples=examples,
concurrency_limit=20,
)
gr.File()
'''
with gr.Blocks() as app:
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox("Instructions")
with gr.Column(scale=1):
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
data=gr.Textbox(label="Input Data", lines=6)
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
go=button.click(summarize,[prompt,chatbot,data],[prompt,chatbot])
stop_button.click(None,None,None,cancels=[go])
app.launch(server_port=7860,show_api=False)