Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -203,6 +203,9 @@ def blur_im(img,bounds,target_lang,trans_lang,ocr_sens,font_fac,t_color):
|
|
203 |
elif t_color=="White":
|
204 |
im[y:y+h, x:x+w] = cv2.erode(im[y:y+h, x:x+w], kernel, iterations=3)
|
205 |
pass
|
|
|
|
|
|
|
206 |
im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
|
207 |
else:
|
208 |
pass
|
@@ -234,7 +237,7 @@ def draw_boxes(image, bounds, ocr_sens,width=1):
|
|
234 |
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
|
235 |
return image
|
236 |
|
237 |
-
def detect(img, target_lang,trans_lang,ocr_sens,font_fac,
|
238 |
if target_lang2 != None and target_lang2 != "":
|
239 |
lang=f"{lang_id[target_lang]}"
|
240 |
lang2=f"{lang_id[target_lang2]}"
|
@@ -252,7 +255,7 @@ def detect(img, target_lang,trans_lang,ocr_sens,font_fac,target_lang2=None):
|
|
252 |
bounds = reader.readtext(img1)
|
253 |
im = PIL.Image.open(path)
|
254 |
im_out=draw_boxes(im, bounds,ocr_sens)
|
255 |
-
blr_out=blur_im(path,bounds,target_lang,trans_lang,ocr_sens,font_fac)
|
256 |
return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:]
|
257 |
|
258 |
with gr.Blocks() as robot:
|
@@ -285,7 +288,7 @@ with gr.Blocks() as robot:
|
|
285 |
ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
|
286 |
font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
|
287 |
ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")
|
288 |
-
text_color=gr.Radio(["Black", "White"])
|
289 |
|
290 |
go_btn=gr.Button("Go")
|
291 |
with gr.Row():
|
|
|
203 |
elif t_color=="White":
|
204 |
im[y:y+h, x:x+w] = cv2.erode(im[y:y+h, x:x+w], kernel, iterations=3)
|
205 |
pass
|
206 |
+
else:
|
207 |
+
pass
|
208 |
+
|
209 |
im[y:y+h, x:x+w] = cv2.GaussianBlur(im[y:y+h, x:x+w],(51,51),0)
|
210 |
else:
|
211 |
pass
|
|
|
237 |
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
|
238 |
return image
|
239 |
|
240 |
+
def detect(img, target_lang,trans_lang,ocr_sens,font_fac,t_color):
|
241 |
if target_lang2 != None and target_lang2 != "":
|
242 |
lang=f"{lang_id[target_lang]}"
|
243 |
lang2=f"{lang_id[target_lang2]}"
|
|
|
255 |
bounds = reader.readtext(img1)
|
256 |
im = PIL.Image.open(path)
|
257 |
im_out=draw_boxes(im, bounds,ocr_sens)
|
258 |
+
blr_out=blur_im(path,bounds,target_lang,trans_lang,ocr_sens,font_fac,t_color)
|
259 |
return im_out,blr_out,pd.DataFrame(bounds),pd.DataFrame(bounds).iloc[:,1:]
|
260 |
|
261 |
with gr.Blocks() as robot:
|
|
|
288 |
ocr_sens=gr.Slider(0.1, 1, step=0.05,value=0.25,label="Detect Min Confidence")
|
289 |
font_fac=gr.Slider(0.1, 1, step =0.1,value=0.4,label="Font Scale")
|
290 |
ocr_space=gr.Slider(1,10, step=1,value=5,label="Future Function")
|
291 |
+
text_color=gr.Radio(label="Font Color",choices=["Black", "White"], value="Black")
|
292 |
|
293 |
go_btn=gr.Button("Go")
|
294 |
with gr.Row():
|