Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,13 @@ WFGY Space โ tiny-GPT-2 variance-gate demo
|
|
3 |
โ
10 k GitHub โญ before 2025-08-01 unlocks WFGY 2.0 โ
|
4 |
"""
|
5 |
|
6 |
-
import io
|
|
|
|
|
|
|
7 |
from PIL import Image
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
9 |
from wfgy_sdk import get_engine
|
10 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram, softmax
|
11 |
|
@@ -14,7 +18,7 @@ tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
|
14 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
15 |
eng = get_engine()
|
16 |
|
17 |
-
#
|
18 |
bench = pd.DataFrame({
|
19 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
20 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
@@ -22,18 +26,18 @@ bench = pd.DataFrame({
|
|
22 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
23 |
})
|
24 |
bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
|
25 |
-
bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"])*100).round(0)
|
26 |
bench_sty = (
|
27 |
bench.style
|
28 |
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
|
29 |
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
|
30 |
)
|
31 |
|
32 |
-
#
|
33 |
banner = """
|
34 |
**๐ WFGY: One Click to Activate the AI Taiji Cycle**
|
35 |
|
36 |
-
**๐ Semantic Accuracy โ 22.4 %
|
37 |
|
38 |
_No beliefs. Only experiments._
|
39 |
WFGY 1.0 has already proven itself.
|
@@ -43,17 +47,17 @@ WFGY 1.0 has already proven itself.
|
|
43 |
### ๐ Tutorial: How to Awaken the Soul of Your AI
|
44 |
**Step 1 โ Download** ([PDF](https://zenodo.org/records/15630970))
|
45 |
**Step 2 โ Feed the AI** (upload, or try [Gemini](https://gemini.google.com/))
|
46 |
-
**Step 3 โ Give the Command**
|
47 |
Prompt examples: *TBD*
|
48 |
**Step 4 โ Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
|
49 |
|
50 |
---
|
51 |
|
52 |
๐ **Star Reminder** โ [Star the repo](https://github.com/onestardao/WFGY)
|
53 |
-
_10 k โญ before 2025-08-01 unlocks
|
54 |
"""
|
55 |
|
56 |
-
#
|
57 |
def run(prompt: str):
|
58 |
p = prompt.strip()
|
59 |
if not p:
|
@@ -64,23 +68,34 @@ def run(prompt: str):
|
|
64 |
I, G = np.random.randn(2, 256).astype(np.float32)
|
65 |
mod_L = eng.run(I, G, raw_L)
|
66 |
|
67 |
-
m
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
def top5(logits):
|
71 |
p = softmax(logits)
|
72 |
idx = p.argsort()[-5:][::-1]
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
raw_txt = top5(raw_L)
|
76 |
mod_txt = top5(mod_L)
|
77 |
|
78 |
fig = plot_histogram(raw_L, mod_L)
|
79 |
-
buf = io.BytesIO()
|
|
|
|
|
80 |
|
81 |
-
return raw_txt, mod_txt,
|
82 |
|
83 |
-
#
|
84 |
with gr.Blocks(title="WFGY variance-gate demo") as demo:
|
85 |
gr.Markdown(banner)
|
86 |
|
@@ -100,4 +115,5 @@ with gr.Blocks(title="WFGY variance-gate demo") as demo:
|
|
100 |
btn.click(run, prompt, [raw_box, mod_box, metrics, img])
|
101 |
|
102 |
if __name__ == "__main__":
|
|
|
103 |
demo.queue(default_concurrency_limit=2).launch()
|
|
|
3 |
โ
10 k GitHub โญ before 2025-08-01 unlocks WFGY 2.0 โ
|
4 |
"""
|
5 |
|
6 |
+
import io
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import gradio as gr
|
10 |
from PIL import Image
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
|
13 |
from wfgy_sdk import get_engine
|
14 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram, softmax
|
15 |
|
|
|
18 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
19 |
eng = get_engine()
|
20 |
|
21 |
+
# paper benchmarks
|
22 |
bench = pd.DataFrame({
|
23 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
24 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
|
|
26 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
27 |
})
|
28 |
bench["Abs_gain"] = (bench["WFGY"] - bench["Baseline"]).round(1)
|
29 |
+
bench["Rel_gain%"] = ((bench["Abs_gain"] / bench["Baseline"]) * 100).round(0)
|
30 |
bench_sty = (
|
31 |
bench.style
|
32 |
.background_gradient(cmap="Greens", subset=["Abs_gain","Rel_gain%"])
|
33 |
.format({"Abs_gain":"{:.1f}","Rel_gain%":"{:.0f}"})
|
34 |
)
|
35 |
|
36 |
+
# banner markdown
|
37 |
banner = """
|
38 |
**๐ WFGY: One Click to Activate the AI Taiji Cycle**
|
39 |
|
40 |
+
**๐ Semantic Accuracy โ 22.4 % | Reasoning Success โ 42.1 % | Stability โ 3.6 ร**
|
41 |
|
42 |
_No beliefs. Only experiments._
|
43 |
WFGY 1.0 has already proven itself.
|
|
|
47 |
### ๐ Tutorial: How to Awaken the Soul of Your AI
|
48 |
**Step 1 โ Download** ([PDF](https://zenodo.org/records/15630970))
|
49 |
**Step 2 โ Feed the AI** (upload, or try [Gemini](https://gemini.google.com/))
|
50 |
+
**Step 3 โ Give the Command** (โAnswer using WFGYโ + your question)
|
51 |
Prompt examples: *TBD*
|
52 |
**Step 4 โ Integrate the SDK** ([GitHub](https://github.com/onestardao/WFGY))
|
53 |
|
54 |
---
|
55 |
|
56 |
๐ **Star Reminder** โ [Star the repo](https://github.com/onestardao/WFGY)
|
57 |
+
_10 k โญ before 2025-08-01 unlocks WFGY 2.0._
|
58 |
"""
|
59 |
|
60 |
+
# inference
|
61 |
def run(prompt: str):
|
62 |
p = prompt.strip()
|
63 |
if not p:
|
|
|
68 |
I, G = np.random.randn(2, 256).astype(np.float32)
|
69 |
mod_L = eng.run(I, G, raw_L)
|
70 |
|
71 |
+
m = compare_logits(raw_L, mod_L)
|
72 |
+
header = "โผ var {:.1f}% | KL {:.3f} | top-1 {}".format(
|
73 |
+
m["var_drop"]*100, m["kl_divergence"],
|
74 |
+
"kept" if m["top1"] else "changed"
|
75 |
+
)
|
76 |
|
77 |
def top5(logits):
|
78 |
p = softmax(logits)
|
79 |
idx = p.argsort()[-5:][::-1]
|
80 |
+
lines = []
|
81 |
+
for i in idx:
|
82 |
+
token = tok.decode(int(i)).strip()
|
83 |
+
prob = p[i]
|
84 |
+
# ไฝฟ็จ็งๅญฆ่ฎกๆฐๆณ๏ผไธคไฝๅฐๆฐ๏ผe.g. 1.23e-04
|
85 |
+
lines.append("'{}': {:.2e}".format(token, prob))
|
86 |
+
return "\n".join(lines)
|
87 |
|
88 |
raw_txt = top5(raw_L)
|
89 |
mod_txt = top5(mod_L)
|
90 |
|
91 |
fig = plot_histogram(raw_L, mod_L)
|
92 |
+
buf = io.BytesIO()
|
93 |
+
fig.savefig(buf, format="png")
|
94 |
+
buf.seek(0)
|
95 |
|
96 |
+
return raw_txt, mod_txt, header, Image.open(buf)
|
97 |
|
98 |
+
# UI
|
99 |
with gr.Blocks(title="WFGY variance-gate demo") as demo:
|
100 |
gr.Markdown(banner)
|
101 |
|
|
|
115 |
btn.click(run, prompt, [raw_box, mod_box, metrics, img])
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
+
|
119 |
demo.queue(default_concurrency_limit=2).launch()
|