File size: 9,532 Bytes
a42db59 4542f4d a42db59 4542f4d a42db59 4542f4d a42db59 4542f4d a42db59 e1c31ae a42db59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import cv2
import numpy as np
import time
import os
import matplotlib.pyplot as plt
import gradio as gr
# try:
# from pygame import mixer
# mixer_init = True
# except ModuleNotFoundError:
# mixer = None
# mixer_init = False
# ------------------------------------------------------------------------------
# 1. Initializations.
# ------------------------------------------------------------------------------
# Initialize counter for the number of blinks detected.
BLINK = 0
# Model file paths.
MODEL_PATH = "./model/res10_300x300_ssd_iter_140000.caffemodel"
CONFIG_PATH = "./model/deploy.prototxt"
LBF_MODEL = "./model/lbfmodel.yaml"
# Create a face detector network instance.
net = cv2.dnn.readNetFromCaffe(CONFIG_PATH, MODEL_PATH)
# Create the landmark detector instance.
landmarkDetector = cv2.face.createFacemarkLBF()
landmarkDetector.loadModel(LBF_MODEL)
# ------------------------------------------------------------------------------
# 2. Function definitions.
# ------------------------------------------------------------------------------
def detect_faces(image, detection_threshold=0.70):
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), [104, 117, 123])
net.setInput(blob)
detections = net.forward()
faces = []
img_h = image.shape[0]
img_w = image.shape[1]
for detection in detections[0][0]:
if detection[2] >= detection_threshold:
left = detection[3] * img_w
top = detection[4] * img_h
right = detection[5] * img_w
bottom = detection[6] * img_h
face_w = right - left
face_h = bottom - top
face_roi = (left, top, face_w, face_h)
faces.append(face_roi)
return np.array(faces).astype(int)
def get_primary_face(faces, frame_h, frame_w):
primary_face_index = None
face_height_max = 0
for idx in range(len(faces)):
face = faces[idx]
x1 = face[0]
y1 = face[1]
x2 = x1 + face[2]
y2 = y1 + face[3]
if x1 > frame_w or y1 > frame_h or x2 > frame_w or y2 > frame_h:
continue
if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
continue
# Prioritize the face with the maximum height.
if face[3] > face_height_max:
primary_face_index = idx
face_height_max = face[3]
if primary_face_index is not None:
primary_face = faces[primary_face_index]
else:
primary_face = None
return primary_face
def visualize_eyes(landmarks, frame):
for i in range(36, 48):
cv2.circle(frame, tuple(landmarks[i].astype("int")), 2, (0, 255, 0), -1)
def get_eye_aspect_ratio(landmarks):
vert_dist_1right = calculate_distance(landmarks[37], landmarks[41])
vert_dist_2right = calculate_distance(landmarks[38], landmarks[40])
vert_dist_1left = calculate_distance(landmarks[43], landmarks[47])
vert_dist_2left = calculate_distance(landmarks[44], landmarks[46])
horz_dist_right = calculate_distance(landmarks[36], landmarks[39])
horz_dist_left = calculate_distance(landmarks[42], landmarks[45])
EAR_left = (vert_dist_1left + vert_dist_2left) / (2.0 * horz_dist_left)
EAR_right = (vert_dist_1right + vert_dist_2right) / (2.0 * horz_dist_right)
ear = (EAR_left + EAR_right) / 2
return ear
def calculate_distance(A, B):
distance = ((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2) ** 0.5
return distance
# def play(file):
# if mixer_init:
# mixer.init()
# sound = mixer.Sound(file)
# sound.play()
# ------------------------------------------------------------------------------
# 3. Processing function (to be used in Gradio).
# ------------------------------------------------------------------------------
def process_video(input_video):
# Generate unique filenames for the outputs
out_video_filename = "processed_video.mp4"
out_plot_filename = "ear_plot.png"
cap = cv2.VideoCapture(input_video)
ret, frame = cap.read()
if not ret:
print("Cannot read the input video.")
return None, None
frame_h = frame.shape[0]
frame_w = frame.shape[1]
# Initialize writer for processed video
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
out_writer = cv2.VideoWriter(out_video_filename, fourcc, fps, (frame_w, frame_h))
# Calibration
frame_count = 0
frame_calib = 30 # Number of frames to use for threshold calibration.
sum_ear = 0
BLINK = 0
state_prev = state_curr = "open"
ear_values = []
while True:
ret, frame = cap.read()
if not ret:
break
# Detect Face.
faces = detect_faces(frame, detection_threshold=0.90)
if len(faces) > 0:
# Use primary face
primary_face = get_primary_face(faces, frame_h, frame_w)
if primary_face is not None:
cv2.rectangle(
frame,
(primary_face[0], primary_face[1]),
(primary_face[0] + primary_face[2], primary_face[1] + primary_face[3]),
(0, 255, 0),
3,
)
# Detect Landmarks
retval, landmarksList = landmarkDetector.fit(frame, np.expand_dims(primary_face, 0))
if retval:
landmarks = landmarksList[0][0]
# Display detections.
visualize_eyes(landmarks, frame)
# Get EAR
ear = get_eye_aspect_ratio(landmarks)
ear_values.append(ear)
if frame_count < frame_calib:
frame_count += 1
sum_ear += ear
elif frame_count == frame_calib:
frame_count += 1
avg_ear = sum_ear / frame_count
HIGHER_TH = 0.90 * avg_ear
LOWER_TH = 0.80 * HIGHER_TH
print("SET EAR HIGH: ", HIGHER_TH)
print("SET EAR LOW: ", LOWER_TH)
else:
if ear < LOWER_TH:
state_curr = "closed"
elif ear > HIGHER_TH:
state_curr = "open"
if state_prev == "closed" and state_curr == "open":
BLINK += 1
# if mixer_init:
# play("./click.wav")
state_prev = state_curr
cv2.putText(
frame,
f"Blink Counter: {BLINK}",
(10, 80),
cv2.FONT_HERSHEY_SIMPLEX,
1.5,
(0, 0, 255),
4,
cv2.LINE_AA,
)
else:
# No valid face detected
pass
else:
# No faces
pass
frame_out_final = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
out_writer.write(frame)
yield frame_out_final, None, None
cap.release()
out_writer.release()
# Plot EAR values if collected
if ear_values:
plt.figure(figsize=(10, 5.625))
plt.plot(ear_values, label="EAR")
plt.title("Eye Aspect Ratio (EAR) over time")
plt.xlabel("Frame Index")
plt.ylabel("EAR")
plt.legend()
plt.grid(True)
plt.savefig(out_plot_filename)
plt.close()
else:
out_plot_filename = None
yield None, out_video_filename, out_plot_filename
# ------------------------------------------------------------------------------
# 4. Gradio UI
# ------------------------------------------------------------------------------
def process_gradio(video_file):
if video_file is None:
return None, None, None
video_path = video_file
output_frames = None
processed_video = None
plot_img = None
# Process video using generator
for frame_out, processed_video_path, plot_path in process_video(video_path):
if frame_out is not None:
output_frames = frame_out # Update frames dynamically
yield output_frames, None, None # Gradio updates frames step-by-step
else:
processed_video = processed_video_path
plot_img = plot_path
# Final yield with processed video and EAR plot
yield None, processed_video, plot_img
with gr.Blocks() as demo:
gr.Markdown("# Blink Detection with OpenCV")
gr.Markdown("Upload a video to detect blinks and view the EAR plot after processing.")
with gr.Row():
video_input = gr.Video(label="Input Video")
output_frames = gr.Image(label="Output Frames")
process_btn = gr.Button("Process")
with gr.Row():
processed_video = gr.Video(label="Processed Video")
ear_plot = gr.Image(label="EAR Plot")
process_btn.click(process_gradio, inputs=video_input, outputs=[output_frames, processed_video, ear_plot])
examples = [
["./input-video.mp4"],
]
with gr.Row():
gr.Examples(
examples=examples,
inputs=[video_input],
label="Load Example Video",
)
if __name__ == "__main__":
demo.launch()
|