File size: 9,532 Bytes
a42db59
 
 
 
 
 
 
4542f4d
 
a42db59
4542f4d
 
 
 
a42db59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4542f4d
 
 
 
 
a42db59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4542f4d
 
a42db59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c31ae
 
 
a42db59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import cv2
import numpy as np
import time
import os
import matplotlib.pyplot as plt
import gradio as gr

# try:
#     from pygame import mixer

#     mixer_init = True
# except ModuleNotFoundError:
#     mixer = None
#     mixer_init = False

# ------------------------------------------------------------------------------
# 1. Initializations.
# ------------------------------------------------------------------------------

# Initialize counter for the number of blinks detected.
BLINK = 0

# Model file paths.
MODEL_PATH = "./model/res10_300x300_ssd_iter_140000.caffemodel"
CONFIG_PATH = "./model/deploy.prototxt"
LBF_MODEL = "./model/lbfmodel.yaml"

# Create a face detector network instance.
net = cv2.dnn.readNetFromCaffe(CONFIG_PATH, MODEL_PATH)

# Create the landmark detector instance.
landmarkDetector = cv2.face.createFacemarkLBF()
landmarkDetector.loadModel(LBF_MODEL)

# ------------------------------------------------------------------------------
# 2. Function definitions.
# ------------------------------------------------------------------------------


def detect_faces(image, detection_threshold=0.70):
    blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), [104, 117, 123])
    net.setInput(blob)
    detections = net.forward()

    faces = []
    img_h = image.shape[0]
    img_w = image.shape[1]

    for detection in detections[0][0]:
        if detection[2] >= detection_threshold:
            left = detection[3] * img_w
            top = detection[4] * img_h
            right = detection[5] * img_w
            bottom = detection[6] * img_h

            face_w = right - left
            face_h = bottom - top

            face_roi = (left, top, face_w, face_h)
            faces.append(face_roi)

    return np.array(faces).astype(int)


def get_primary_face(faces, frame_h, frame_w):
    primary_face_index = None
    face_height_max = 0
    for idx in range(len(faces)):
        face = faces[idx]
        x1 = face[0]
        y1 = face[1]
        x2 = x1 + face[2]
        y2 = y1 + face[3]
        if x1 > frame_w or y1 > frame_h or x2 > frame_w or y2 > frame_h:
            continue
        if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
            continue

        # Prioritize the face with the maximum height.
        if face[3] > face_height_max:
            primary_face_index = idx
            face_height_max = face[3]

    if primary_face_index is not None:
        primary_face = faces[primary_face_index]
    else:
        primary_face = None

    return primary_face


def visualize_eyes(landmarks, frame):
    for i in range(36, 48):
        cv2.circle(frame, tuple(landmarks[i].astype("int")), 2, (0, 255, 0), -1)


def get_eye_aspect_ratio(landmarks):
    vert_dist_1right = calculate_distance(landmarks[37], landmarks[41])
    vert_dist_2right = calculate_distance(landmarks[38], landmarks[40])
    vert_dist_1left = calculate_distance(landmarks[43], landmarks[47])
    vert_dist_2left = calculate_distance(landmarks[44], landmarks[46])
    horz_dist_right = calculate_distance(landmarks[36], landmarks[39])
    horz_dist_left = calculate_distance(landmarks[42], landmarks[45])
    EAR_left = (vert_dist_1left + vert_dist_2left) / (2.0 * horz_dist_left)
    EAR_right = (vert_dist_1right + vert_dist_2right) / (2.0 * horz_dist_right)
    ear = (EAR_left + EAR_right) / 2
    return ear


def calculate_distance(A, B):
    distance = ((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2) ** 0.5
    return distance


# def play(file):
#     if mixer_init:
#         mixer.init()
#         sound = mixer.Sound(file)
#         sound.play()


# ------------------------------------------------------------------------------
# 3. Processing function (to be used in Gradio).
# ------------------------------------------------------------------------------


def process_video(input_video):

    # Generate unique filenames for the outputs
    out_video_filename = "processed_video.mp4"
    out_plot_filename = "ear_plot.png"

    cap = cv2.VideoCapture(input_video)
    ret, frame = cap.read()
    if not ret:
        print("Cannot read the input video.")
        return None, None

    frame_h = frame.shape[0]
    frame_w = frame.shape[1]

    # Initialize writer for processed video
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
    out_writer = cv2.VideoWriter(out_video_filename, fourcc, fps, (frame_w, frame_h))

    # Calibration
    frame_count = 0
    frame_calib = 30  # Number of frames to use for threshold calibration.
    sum_ear = 0

    BLINK = 0
    state_prev = state_curr = "open"

    ear_values = []

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # Detect Face.
        faces = detect_faces(frame, detection_threshold=0.90)

        if len(faces) > 0:
            # Use primary face
            primary_face = get_primary_face(faces, frame_h, frame_w)

            if primary_face is not None:
                cv2.rectangle(
                    frame,
                    (primary_face[0], primary_face[1]),
                    (primary_face[0] + primary_face[2], primary_face[1] + primary_face[3]),
                    (0, 255, 0),
                    3,
                )

                # Detect Landmarks
                retval, landmarksList = landmarkDetector.fit(frame, np.expand_dims(primary_face, 0))

                if retval:
                    landmarks = landmarksList[0][0]

                    # Display detections.
                    visualize_eyes(landmarks, frame)

                    # Get EAR
                    ear = get_eye_aspect_ratio(landmarks)
                    ear_values.append(ear)

                    if frame_count < frame_calib:
                        frame_count += 1
                        sum_ear += ear
                    elif frame_count == frame_calib:
                        frame_count += 1
                        avg_ear = sum_ear / frame_count
                        HIGHER_TH = 0.90 * avg_ear
                        LOWER_TH = 0.80 * HIGHER_TH
                        print("SET EAR HIGH: ", HIGHER_TH)
                        print("SET EAR LOW: ", LOWER_TH)
                    else:
                        if ear < LOWER_TH:
                            state_curr = "closed"
                        elif ear > HIGHER_TH:
                            state_curr = "open"

                        if state_prev == "closed" and state_curr == "open":
                            BLINK += 1
                            # if mixer_init:
                            #     play("./click.wav")

                        state_prev = state_curr

                        cv2.putText(
                            frame,
                            f"Blink Counter: {BLINK}",
                            (10, 80),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.5,
                            (0, 0, 255),
                            4,
                            cv2.LINE_AA,
                        )
            else:
                # No valid face detected
                pass
        else:
            # No faces
            pass
        frame_out_final = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        out_writer.write(frame)

        yield frame_out_final, None, None

    cap.release()
    out_writer.release()

    # Plot EAR values if collected
    if ear_values:
        plt.figure(figsize=(10, 5.625))
        plt.plot(ear_values, label="EAR")
        plt.title("Eye Aspect Ratio (EAR) over time")
        plt.xlabel("Frame Index")
        plt.ylabel("EAR")
        plt.legend()
        plt.grid(True)
        plt.savefig(out_plot_filename)
        plt.close()
    else:
        out_plot_filename = None

    yield None, out_video_filename, out_plot_filename


# ------------------------------------------------------------------------------
# 4. Gradio UI
# ------------------------------------------------------------------------------


def process_gradio(video_file):
    if video_file is None:
        return None, None, None

    video_path = video_file
    output_frames = None
    processed_video = None
    plot_img = None

    # Process video using generator
    for frame_out, processed_video_path, plot_path in process_video(video_path):
        if frame_out is not None:
            output_frames = frame_out  # Update frames dynamically
            yield output_frames, None, None  # Gradio updates frames step-by-step
        else:
            processed_video = processed_video_path
            plot_img = plot_path

    # Final yield with processed video and EAR plot
    yield None, processed_video, plot_img


with gr.Blocks() as demo:
    gr.Markdown("# Blink Detection with OpenCV")
    gr.Markdown("Upload a video to detect blinks and view the EAR plot after processing.")
    with gr.Row():
        video_input = gr.Video(label="Input Video")
        output_frames = gr.Image(label="Output Frames")
    process_btn = gr.Button("Process")
    with gr.Row():
        processed_video = gr.Video(label="Processed Video")
        ear_plot = gr.Image(label="EAR Plot")
    process_btn.click(process_gradio, inputs=video_input, outputs=[output_frames, processed_video, ear_plot])
    
    examples = [
        ["./input-video.mp4"],
    ]

    with gr.Row():
        gr.Examples(
            examples=examples,
            inputs=[video_input],
            label="Load Example Video",
        )

if __name__ == "__main__":
    demo.launch()