Ankan Ghosh
Update app.py
561bbde verified
import cv2
import numpy as np
import gradio as gr
# Define a blurring function.
def blur(face, factor=3):
h, w = face.shape[:2]
if factor < 1:
factor = 1 # Maximum blurring
if factor > 5:
factor = 5 # Minimal blurring
# Kernel size.
w_k = int(w / factor)
h_k = int(h / factor)
# Insure kernel is an odd number.
if w_k % 2 == 0:
w_k += 1
if h_k % 2 == 0:
h_k += 1
blurred = cv2.GaussianBlur(face, (int(w_k), int(h_k)), 0, 0)
return blurred
def pixelate(roi, pixels=16):
# Size of region to pixelate.
roi_h, roi_w = roi.shape[:2]
if roi_h > pixels and roi_w > pixels:
# Resize input ROI to the (small) pixelated size.
roi_small = cv2.resize(roi, (pixels, pixels), interpolation=cv2.INTER_LINEAR)
# Now enlarge the pixelated ROI to fill the size of the original ROI.
roi_pixelated = cv2.resize(roi_small, (roi_w, roi_h), interpolation=cv2.INTER_NEAREST)
else:
roi_pixelated = roi
return roi_pixelated
def face_blur_ellipse_pixelate(image, net, detect_threshold=0.9, factor=3, pixels=10, write_mask=False):
img = image.copy()
img_out = img.copy()
elliptical_mask = np.zeros(img.shape, dtype=img.dtype)
# Prepare image and perform inference.
blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=[104, 117, 123])
net.setInput(blob)
detections = net.forward()
h, w = img.shape[:2]
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > detect_threshold:
# Extract the bounding box coordinates from the detection.
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(x1, y1, x2, y2) = box
# The face is defined by the bounding rectangle from the detection.
face = img[int(y1) : int(y2), int(x1) : int(x2), :]
# Blur the rectangular area defined by the bounding box.
face = blur(face, factor=factor)
# Pixelate the blurred face.
face = pixelate(face, pixels=pixels)
# Copy the blurred/pixelated face to the output image.
img_out[int(y1) : int(y2), int(x1) : int(x2), :] = face
# Specify the elliptical parameters directly from the bounding box coordinates.
e_center = (x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2)
e_size = (x2 - x1, y2 - y1)
e_angle = 0.0
# Create an elliptical mask.
elliptical_mask = cv2.ellipse(
elliptical_mask, (e_center, e_size, e_angle), (255, 255, 255), -1, cv2.LINE_AA
)
# Apply the elliptical mask.
np.putmask(img, elliptical_mask, img_out)
if write_mask:
cv2.imwrite("elliptical_mask.jpg", elliptical_mask)
return img
# img1_epb = face_blur_ellipse_pixelate(img1, net, factor=3.5, pixels=15)
# img2_epb = face_blur_ellipse_pixelate(img2, net, factor=2, pixels=10)
# cv2.imshow('image-out', img1_epb)
# cv2.waitKey(0)
# cv2.imshow('image-out', img2_epb)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
def process_video(input_video_path, detect_threshold=0.9, blur_factor=3, pixel_size=10):
# Load the DNN model.
modelFile = "./model/res10_300x300_ssd_iter_140000.caffemodel"
configFile = "./model/deploy.prototxt"
# Read the model and create a network object.
net = cv2.dnn.readNetFromCaffe(prototxt=configFile, caffeModel=modelFile)
# Initialize video capture.
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
print(f"Error: Cannot open video file {input_video_path}")
return
# Get video properties.
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can change the codec as needed.
output_video_path = "output_video.mp4"
# Initialize video writer.
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
current_frame = 0
print(f"Processing video... Total frames: {frame_count}")
while True:
ret, frame = cap.read()
if not ret:
break
# Process the frame.
processed_frame = face_blur_ellipse_pixelate(frame, net, detect_threshold, blur_factor, pixel_size)
# cv2.imshow('output', processed_frame)
# Write the processed frame to the output video.
out.write(processed_frame)
current_frame += 1
if current_frame % 30 == 0 or current_frame == frame_count:
print(f"Processed {current_frame}/{frame_count} frames")
# Release resources.
cap.release()
out.release()
print(f"Processing complete. Output saved to {output_video_path}")
return output_video_path
# input_video = "./input-video.mp4"
# process_video(input_video)
# Define the Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Input Video", autoplay=True),
gr.Slider(minimum=0.5, maximum=0.99, value=0.9, label="Detection Confidence Threshold"),
gr.Slider(minimum=1, maximum=5, step=0.5, value=3, label="Blur Factor"),
gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Pixelation Size"),
],
outputs=[gr.Video(label="Processed Video", autoplay=True)],
title="Face Blurring with OpenCV",
description="Upload a video file (MP4 or AVI). The app will detect faces, blur and pixelate them, and provide a processed video for download.",
examples=[["./input-video.mp4", 0.9, 3, 10], ["./man-woman.mp4", 0.85, 4, 12]],
cache_examples=False,
)
if __name__ == "__main__":
iface.launch()