|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
|
|
|
|
|
|
def blur(face, factor=3): |
|
|
|
h, w = face.shape[:2] |
|
|
|
if factor < 1: |
|
factor = 1 |
|
if factor > 5: |
|
factor = 5 |
|
|
|
|
|
w_k = int(w / factor) |
|
h_k = int(h / factor) |
|
|
|
|
|
if w_k % 2 == 0: |
|
w_k += 1 |
|
if h_k % 2 == 0: |
|
h_k += 1 |
|
|
|
blurred = cv2.GaussianBlur(face, (int(w_k), int(h_k)), 0, 0) |
|
return blurred |
|
|
|
|
|
def pixelate(roi, pixels=16): |
|
|
|
|
|
roi_h, roi_w = roi.shape[:2] |
|
|
|
if roi_h > pixels and roi_w > pixels: |
|
|
|
roi_small = cv2.resize(roi, (pixels, pixels), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
roi_pixelated = cv2.resize(roi_small, (roi_w, roi_h), interpolation=cv2.INTER_NEAREST) |
|
else: |
|
roi_pixelated = roi |
|
|
|
return roi_pixelated |
|
|
|
|
|
def face_blur_ellipse_pixelate(image, net, detect_threshold=0.9, factor=3, pixels=10, write_mask=False): |
|
|
|
img = image.copy() |
|
img_out = img.copy() |
|
elliptical_mask = np.zeros(img.shape, dtype=img.dtype) |
|
|
|
|
|
blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=[104, 117, 123]) |
|
net.setInput(blob) |
|
detections = net.forward() |
|
|
|
h, w = img.shape[:2] |
|
for i in range(detections.shape[2]): |
|
confidence = detections[0, 0, i, 2] |
|
if confidence > detect_threshold: |
|
|
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(x1, y1, x2, y2) = box |
|
|
|
|
|
face = img[int(y1) : int(y2), int(x1) : int(x2), :] |
|
|
|
|
|
face = blur(face, factor=factor) |
|
|
|
|
|
face = pixelate(face, pixels=pixels) |
|
|
|
|
|
img_out[int(y1) : int(y2), int(x1) : int(x2), :] = face |
|
|
|
|
|
e_center = (x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2) |
|
e_size = (x2 - x1, y2 - y1) |
|
e_angle = 0.0 |
|
|
|
|
|
elliptical_mask = cv2.ellipse( |
|
elliptical_mask, (e_center, e_size, e_angle), (255, 255, 255), -1, cv2.LINE_AA |
|
) |
|
|
|
np.putmask(img, elliptical_mask, img_out) |
|
|
|
if write_mask: |
|
cv2.imwrite("elliptical_mask.jpg", elliptical_mask) |
|
|
|
return img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_video(input_video_path, detect_threshold=0.9, blur_factor=3, pixel_size=10): |
|
|
|
|
|
modelFile = "./model/res10_300x300_ssd_iter_140000.caffemodel" |
|
configFile = "./model/deploy.prototxt" |
|
|
|
|
|
net = cv2.dnn.readNetFromCaffe(prototxt=configFile, caffeModel=modelFile) |
|
|
|
cap = cv2.VideoCapture(input_video_path) |
|
if not cap.isOpened(): |
|
print(f"Error: Cannot open video file {input_video_path}") |
|
return |
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") |
|
output_video_path = "output_video.mp4" |
|
|
|
|
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) |
|
|
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
current_frame = 0 |
|
|
|
print(f"Processing video... Total frames: {frame_count}") |
|
|
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
|
|
processed_frame = face_blur_ellipse_pixelate(frame, net, detect_threshold, blur_factor, pixel_size) |
|
|
|
|
|
|
|
|
|
out.write(processed_frame) |
|
|
|
current_frame += 1 |
|
if current_frame % 30 == 0 or current_frame == frame_count: |
|
print(f"Processed {current_frame}/{frame_count} frames") |
|
|
|
|
|
cap.release() |
|
out.release() |
|
print(f"Processing complete. Output saved to {output_video_path}") |
|
return output_video_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_video, |
|
inputs=[ |
|
gr.Video(label="Input Video", autoplay=True), |
|
gr.Slider(minimum=0.5, maximum=0.99, value=0.9, label="Detection Confidence Threshold"), |
|
gr.Slider(minimum=1, maximum=5, step=0.5, value=3, label="Blur Factor"), |
|
gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Pixelation Size"), |
|
], |
|
outputs=[gr.Video(label="Processed Video", autoplay=True)], |
|
title="Face Blurring with OpenCV", |
|
description="Upload a video file (MP4 or AVI). The app will detect faces, blur and pixelate them, and provide a processed video for download.", |
|
examples=[["./input-video.mp4", 0.9, 3, 10], ["./man-woman.mp4", 0.85, 4, 12]], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|