File size: 5,276 Bytes
28fca4e
 
 
 
 
 
 
7763357
28fca4e
 
 
 
 
b8684d4
 
 
643bd7e
 
 
b8684d4
 
643bd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8684d4
 
643bd7e
 
 
 
 
 
 
43d991e
643bd7e
b8684d4
643bd7e
b8684d4
 
643bd7e
b8684d4
643bd7e
 
 
 
b8684d4
 
643bd7e
b8684d4
643bd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8684d4
 
643bd7e
 
 
b8684d4
 
643bd7e
 
 
 
b8684d4
643bd7e
 
 
 
 
 
 
 
 
 
 
 
6aae17d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
title: ZeroPal
emoji: ๐Ÿ“–
colorFrom: yellow
colorTo: blue
sdk: gradio
sdk_version: 4.1.1
app_file: app_mqa_database.py
pinned: false
license: apache-2.0
python_version: 3.8
---

# ZeroPal

English | [็ฎ€ไฝ“ไธญๆ–‡(Simplified Chinese)](https://github.com/puyuan1996/ZeroPal/blob/main/README_zh.md) 

## Introduction

ZeroPal is a demonstration project for a question-answering system for [LightZero](https://github.com/opendilab/LightZero) based on Retrieval-Augmented Generation (RAG). Zero represents LightZero, and Pal represents a companion.
- It utilizes large language models such as Kimi and GPT-4 in conjunction with a document retrieval vector database like Weaviate to respond to user queries by retrieving relevant document contexts and leveraging the generative capabilities of the language model.
- The project also includes a web-based interactive application built with Gradio and rag_demo.py.

## rag_demo.py Features

- Supports loading OpenAI API keys via environment variables.
- Facilitates loading local documents and splitting them into chunks.
- Allows for the creation of a vector store and the conversion of document chunks into vectors for storage in Weaviate.
- Sets up a Retrieval-Augmented Generation process, combining document retrieval and language model generation to answer user questions.
- Executes queries and prints results, with the option to use the RAG process or not.

## app.py Features

- Creates a Gradio application where users can input questions and the application employs the Retrieval-Augmented Generation (RAG) model to find answers, displaying results within the interface.
- Retrieved contexts are highlighted in the Markdown document to help users understand the source of the answers. The application interface is divided into two sections: the top for Q&A and the bottom to display the contexts referred to by the RAG model.

## How to Use

1. Clone the project to your local machine.
2. Install dependencies.

```shell
pip3 install -r requirements.txt
```
3. Create a `.env` file in the project root directory and add your OpenAI API key:

```
OPENAI_API_KEY='your API key'
QUESTION_LANG='cn' # The language of the question, currently available option is 'cn'
```

4. Ensure you have available documents as context or use the commented-out code snippet to download the documents you want to reference.
5. Run the `python3 -u rag_demo.py` file to test ZeroPal on the local command line.
6. Run the `python3 -u app_mqa_database.py` file to test ZeroPal on a local web page.

## Example

```python

if __name__ == "__main__":
    # Assuming documents are already present locally
    file_path = './documents/LightZero_README_zh.md'
    # Load and split document
    chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
    # Create vector store
    vectorstore = create_vector_store(chunks, model=embedding_model)
    retriever = get_retriever(vectorstore, k=5)
    # Set up RAG process
    rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
    
    # Pose a question and get an answer
    query = "Does the AlphaZero algorithm implemented in LightZero support running in the Atari environment? Please explain in detail."
    # Use RAG chain to get referenced documents and answer
    retrieved_documents, result_with_rag = execute_query(retriever, rag_chain, query, model_name=model_name,
                                                         temperature=temperature)
    # Get an answer without using RAG chain
    result_without_rag = execute_query_no_rag(model_name=model_name, query=query, temperature=temperature)
    
    # Details of data handling code are omitted here, please refer to the source files in this repository for specifics
    
    # Print and compare results from both methods
    print("=" * 40)
    print(f"My question is:\n{query}")
    print("=" * 40)
    print(f"Result with RAG:\n{wrapped_result_with_rag}\nRetrieved context is: \n{context}")
    print("=" * 40)
    print(f"Result without RAG:\n{wrapped_result_without_rag}")
    print("=" * 40)
```

## Project Structure

```
RAG/
โ”‚
โ”œโ”€โ”€ rag_demo.py            # RAG demonstration script with support for outputting retrieved document chunks.
โ”œโ”€โ”€ app_mqa.py             # Web-based interactive application built with Gradio and rag_demo.py.
โ”œโ”€โ”€ app_mqa_database.py    # Web-based interactive application built with Gradio and rag_demo.py. Supports maintaining the database of conversation history.
โ”œโ”€โ”€ .env                   # Environment variable configuration file
โ””โ”€โ”€ documents/             # Documents folder
    โ””โ”€โ”€ your_document.txt  # Context document
โ””โ”€โ”€ database/              # Database folder
    โ””โ”€โ”€ conversation_history.db  # Database for conversation history
```

## Contribution Guide

If you would like to contribute code to ZeroPal, please follow these steps:

1. Fork the project.
2. Create a new branch.
3. Commit your changes.
4. Submit a Pull Request.

## Issues and Support

If you encounter any issues or require assistance, please submit a problem through the project's Issues page.

## License

All code in this repository is compliant with [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).