Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
from collections import namedtuple | |
import copy | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.distributions import Normal, Independent | |
from ding.torch_utils import Adam, to_device | |
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, q_v_1step_td_error, q_v_1step_td_data | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate, default_decollate | |
from .base_policy import Policy | |
from .common_utils import default_preprocess_learn | |
class DiscreteSACPolicy(Policy): | |
""" | |
Overview: | |
Policy class of discrete SAC algorithm. Paper link: https://arxiv.org/abs/1910.07207. | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='discrete_sac', | |
# (bool) Whether to use cuda for network and loss computation. | |
cuda=False, | |
# (bool) Whether to belong to on-policy or off-policy algorithm, DiscreteSAC is an off-policy algorithm. | |
on_policy=False, | |
# (bool) Whether to use priority sampling in buffer. Default to False in DiscreteSAC. | |
priority=False, | |
# (bool) Whether use Importance Sampling weight to correct biased update. If True, priority must be True. | |
priority_IS_weight=False, | |
# (int) Number of training samples (randomly collected) in replay buffer when training starts. | |
random_collect_size=10000, | |
# (bool) Whether to need policy-specific data in process transition. | |
transition_with_policy_data=True, | |
# (bool) Whether to enable multi-agent training setting. | |
multi_agent=False, | |
model=dict( | |
# (bool) Whether to use double-soft-q-net for target q computation. | |
# For more details, please refer to TD3 about Clipped Double-Q Learning trick. | |
twin_critic=True, | |
), | |
# learn_mode config | |
learn=dict( | |
# (int) How many updates (iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
update_per_collect=1, | |
# (int) Minibatch size for one gradient descent. | |
batch_size=256, | |
# (float) Learning rate for soft q network. | |
learning_rate_q=3e-4, | |
# (float) Learning rate for policy network. | |
learning_rate_policy=3e-4, | |
# (float) Learning rate for auto temperature parameter `\alpha`. | |
learning_rate_alpha=3e-4, | |
# (float) Used for soft update of the target network, | |
# aka. Interpolation factor in EMA update for target network. | |
target_theta=0.005, | |
# (float) Discount factor for the discounted sum of rewards, aka. gamma. | |
discount_factor=0.99, | |
# (float) Entropy regularization coefficient in SAC. | |
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details. | |
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`. | |
alpha=0.2, | |
# (bool) Whether to use auto temperature parameter `\alpha` . | |
# Temperature parameter `\alpha` determines the relative importance of the entropy term against the reward. | |
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details. | |
# Note that: Using auto alpha needs to set the above `learning_rate_alpha`. | |
auto_alpha=True, | |
# (bool) Whether to use auto `\alpha` in log space. | |
log_space=True, | |
# (float) Target policy entropy value for auto temperature (alpha) adjustment. | |
target_entropy=None, | |
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum) | |
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers. | |
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000. | |
# However, interaction with HalfCheetah always gets done with done is False, | |
# Since we inplace done==True with done==False to keep | |
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``), | |
# when the episode step is greater than max episode step. | |
ignore_done=False, | |
# (float) Weight uniform initialization max range in the last output layer | |
init_w=3e-3, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training samples collected in one collection procedure. | |
# Only one of [n_sample, n_episode] shoule be set. | |
n_sample=1, | |
# (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
unroll_len=1, | |
# (bool) Whether to collect logit in `process_transition`. | |
# In some algorithm like guided cost learning, we need to use logit to train the reward model. | |
collector_logit=False, | |
), | |
eval=dict(), # for compability | |
other=dict( | |
replay_buffer=dict( | |
# (int) Maximum size of replay buffer. Usually, larger buffer size is good | |
# for SAC but cost more storage. | |
replay_buffer_size=1000000, | |
), | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
""" | |
if self._cfg.multi_agent: | |
return 'discrete_maqac', ['ding.model.template.maqac'] | |
else: | |
return 'discrete_qac', ['ding.model.template.qac'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For DiscreteSAC, it mainly \ | |
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ | |
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
self._twin_critic = self._cfg.model.twin_critic | |
self._optimizer_q = Adam( | |
self._model.critic.parameters(), | |
lr=self._cfg.learn.learning_rate_q, | |
) | |
self._optimizer_policy = Adam( | |
self._model.actor.parameters(), | |
lr=self._cfg.learn.learning_rate_policy, | |
) | |
# Algorithm-Specific Config | |
self._gamma = self._cfg.learn.discount_factor | |
if self._cfg.learn.auto_alpha: | |
if self._cfg.learn.target_entropy is None: | |
assert 'action_shape' in self._cfg.model, "DiscreteSAC need network model with action_shape variable" | |
self._target_entropy = -np.prod(self._cfg.model.action_shape) | |
else: | |
self._target_entropy = self._cfg.learn.target_entropy | |
if self._cfg.learn.log_space: | |
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) | |
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) | |
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad | |
self._alpha = self._log_alpha.detach().exp() | |
self._auto_alpha = True | |
self._log_space = True | |
else: | |
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) | |
self._auto_alpha = True | |
self._log_space = False | |
else: | |
self._alpha = torch.tensor( | |
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 | |
) | |
self._auto_alpha = False | |
# Main and target models | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='momentum', | |
update_kwargs={'theta': self._cfg.learn.target_theta} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
self._learn_model.reset() | |
self._target_model.reset() | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, action, priority. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
training samples. For each element in list, the key of the dict is the name of data items and the \ | |
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
dimension by some utility functions such as ``default_preprocess_learn``. \ | |
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
``logit``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys like ``weight``. | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ | |
``ding.policy.tests.test_discrete_sac``. | |
""" | |
loss_dict = {} | |
data = default_preprocess_learn( | |
data, | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=False | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._learn_model.train() | |
self._target_model.train() | |
obs = data['obs'] | |
next_obs = data['next_obs'] | |
reward = data['reward'] | |
done = data['done'] | |
logit = data['logit'] | |
action = data['action'] | |
# 1. predict q value | |
q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value'] | |
dist = torch.distributions.categorical.Categorical(logits=logit) | |
dist_entropy = dist.entropy() | |
entropy = dist_entropy.mean() | |
# 2. predict target value | |
# target q value. SARSA: first predict next action, then calculate next q value | |
with torch.no_grad(): | |
policy_output_next = self._learn_model.forward(next_obs, mode='compute_actor') | |
if self._cfg.multi_agent: | |
policy_output_next['logit'][policy_output_next['action_mask'] == 0.0] = -1e8 | |
prob = F.softmax(policy_output_next['logit'], dim=-1) | |
log_prob = torch.log(prob + 1e-8) | |
target_q_value = self._target_model.forward(next_obs, mode='compute_critic')['q_value'] | |
# the value of a policy according to the maximum entropy objective | |
if self._twin_critic: | |
# find min one as target q value | |
target_value = ( | |
prob * (torch.min(target_q_value[0], target_q_value[1]) - self._alpha * log_prob.squeeze(-1)) | |
).sum(dim=-1) | |
else: | |
target_value = (prob * (target_q_value - self._alpha * log_prob.squeeze(-1))).sum(dim=-1) | |
# 3. compute q loss | |
if self._twin_critic: | |
q_data0 = q_v_1step_td_data(q_value[0], target_value, action, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample0 = q_v_1step_td_error(q_data0, self._gamma) | |
q_data1 = q_v_1step_td_data(q_value[1], target_value, action, reward, done, data['weight']) | |
loss_dict['twin_critic_loss'], td_error_per_sample1 = q_v_1step_td_error(q_data1, self._gamma) | |
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 | |
else: | |
q_data = q_v_1step_td_data(q_value, target_value, action, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample = q_v_1step_td_error(q_data, self._gamma) | |
# 4. update q network | |
self._optimizer_q.zero_grad() | |
loss_dict['critic_loss'].backward() | |
if self._twin_critic: | |
loss_dict['twin_critic_loss'].backward() | |
self._optimizer_q.step() | |
# 5. evaluate to get action distribution | |
policy_output = self._learn_model.forward(obs, mode='compute_actor') | |
# 6. apply discrete action mask in multi_agent setting | |
if self._cfg.multi_agent: | |
policy_output['logit'][policy_output['action_mask'] == 0.0] = -1e8 | |
logit = policy_output['logit'] | |
prob = F.softmax(logit, dim=-1) | |
log_prob = F.log_softmax(logit, dim=-1) | |
with torch.no_grad(): | |
new_q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value'] | |
if self._twin_critic: | |
new_q_value = torch.min(new_q_value[0], new_q_value[1]) | |
# 7. compute policy loss | |
# we need to sum different actions' policy loss and calculate the average value of a batch | |
policy_loss = (prob * (self._alpha * log_prob - new_q_value)).sum(dim=-1).mean() | |
loss_dict['policy_loss'] = policy_loss | |
# 8. update policy network | |
self._optimizer_policy.zero_grad() | |
loss_dict['policy_loss'].backward() | |
self._optimizer_policy.step() | |
# 9. compute alpha loss | |
if self._auto_alpha: | |
if self._log_space: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = (-prob.detach() * (self._log_alpha * log_prob.detach())).sum(dim=-1).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha = self._log_alpha.detach().exp() | |
else: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = (-prob.detach() * (self._alpha * log_prob.detach())).sum(dim=-1).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha.data = torch.where(self._alpha > 0, self._alpha, | |
torch.zeros_like(self._alpha)).requires_grad_() | |
loss_dict['total_loss'] = sum(loss_dict.values()) | |
# target update | |
self._target_model.update(self._learn_model.state_dict()) | |
return { | |
'total_loss': loss_dict['total_loss'].item(), | |
'policy_loss': loss_dict['policy_loss'].item(), | |
'critic_loss': loss_dict['critic_loss'].item(), | |
'cur_lr_q': self._optimizer_q.defaults['lr'], | |
'cur_lr_p': self._optimizer_policy.defaults['lr'], | |
'priority': td_error_per_sample.abs().tolist(), | |
'td_error': td_error_per_sample.detach().mean().item(), | |
'alpha': self._alpha.item(), | |
'q_value_1': target_q_value[0].detach().mean().item(), | |
'q_value_2': target_q_value[1].detach().mean().item(), | |
'target_value': target_value.detach().mean().item(), | |
'entropy': entropy.item(), | |
} | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
""" | |
Overview: | |
Return the state_dict of learn mode, usually including model, target_model and optimizers. | |
Returns: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. | |
""" | |
ret = { | |
'model': self._learn_model.state_dict(), | |
'target_model': self._target_model.state_dict(), | |
'optimizer_q': self._optimizer_q.state_dict(), | |
'optimizer_policy': self._optimizer_policy.state_dict(), | |
} | |
if self._auto_alpha: | |
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()}) | |
return ret | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
""" | |
Overview: | |
Load the state_dict variable into policy learn mode. | |
Arguments: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. | |
.. tip:: | |
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
complicated operation. | |
""" | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._target_model.load_state_dict(state_dict['target_model']) | |
self._optimizer_q.load_state_dict(state_dict['optimizer_q']) | |
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy']) | |
if self._auto_alpha: | |
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha']) | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \ | |
collect_model to balance the exploration and exploitation with the epsilon and multinomial sample \ | |
mechanism, and other algorithm-specific arguments such as unroll_len. \ | |
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
""" | |
self._unroll_len = self._cfg.collect.unroll_len | |
# Empirically, we found that eps_greedy_multinomial_sample works better than multinomial_sample | |
# and eps_greedy_sample, and we don't divide logit by alpha, | |
# for the details please refer to ding/model/wrapper/model_wrappers | |
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_multinomial_sample') | |
self._collect_model.reset() | |
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \ | |
exploration, i.e., classic epsilon-greedy exploration strategy. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
- eps (:obj:`float`): The epsilon value for exploration. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ | |
dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ | |
``ding.policy.tests.test_discrete_sac``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
with torch.no_grad(): | |
output = self._collect_model.forward(data, mode='compute_actor', eps=eps) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
saved in replay buffer. For discrete SAC, it contains obs, next_obs, logit, action, reward, done. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
as input. For discrete SAC, it contains the action and the logit of the action. | |
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
reward, done, info, etc. | |
Returns: | |
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
""" | |
transition = { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'action': policy_output['action'], | |
'logit': policy_output['logit'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
can be used for training directly. In discrete SAC, a train sample is a processed transition (unroll_len=1). | |
Arguments: | |
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
the same format as the return value of ``self._process_transition`` method. | |
Returns: | |
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
as input transitions, but may contain more data for training. | |
""" | |
return get_train_sample(transitions, self._unroll_len) | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Initialize the eval mode of policy, including related attributes and modules. For DiscreteSAC, it contains \ | |
the eval model to greedily select action type with argmax q_value mechanism. | |
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
""" | |
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._eval_model.reset() | |
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
key of the dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ | |
``ding.policy.tests.test_discrete_sac``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
output = self._eval_model.forward(data, mode='compute_actor') | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] | |
if self._auto_alpha: | |
return super()._monitor_vars_learn() + [ | |
'alpha_loss', 'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1', | |
'q_value_2', 'alpha', 'td_error', 'target_value', 'entropy' | |
] + twin_critic | |
else: | |
return super()._monitor_vars_learn() + [ | |
'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1', 'q_value_2', | |
'alpha', 'td_error', 'target_value', 'entropy' | |
] + twin_critic | |
class SACPolicy(Policy): | |
""" | |
Overview: | |
Policy class of continuous SAC algorithm. Paper link: https://arxiv.org/pdf/1801.01290.pdf | |
Config: | |
== ==================== ======== ============= ================================= ======================= | |
ID Symbol Type Default Value Description Other | |
== ==================== ======== ============= ================================= ======================= | |
1 ``type`` str sac | RL policy register name, refer | this arg is optional, | |
| to registry ``POLICY_REGISTRY`` | a placeholder | |
2 ``cuda`` bool True | Whether to use cuda for network | | |
3 ``on_policy`` bool False | SAC is an off-policy | | |
| algorithm. | | |
4 ``priority`` bool False | Whether to use priority | | |
| sampling in buffer. | | |
5 | ``priority_IS_`` bool False | Whether use Importance Sampling | | |
| ``weight`` | weight to correct biased update | | |
6 | ``random_`` int 10000 | Number of randomly collected | Default to 10000 for | |
| ``collect_size`` | training samples in replay | SAC, 25000 for DDPG/ | |
| | buffer when training starts. | TD3. | |
7 | ``learn.learning`` float 3e-4 | Learning rate for soft q | Defalut to 1e-3 | |
| ``_rate_q`` | network. | | |
8 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to 1e-3 | |
| ``_rate_policy`` | network. | | |
9 | ``learn.alpha`` float 0.2 | Entropy regularization | alpha is initiali- | |
| | coefficient. | zation for auto | |
| | | alpha, when | |
| | | auto_alpha is True | |
10 | ``learn.`` bool False | Determine whether to use | Temperature parameter | |
| ``auto_alpha`` | auto temperature parameter | determines the | |
| | alpha. | relative importance | |
| | | of the entropy term | |
| | | against the reward. | |
11 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only | |
| ``ignore_done`` | done flag. | in env like Pendulum | |
12 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation | |
| ``target_theta`` | target network. | factor in polyak aver | |
| | | aging for target | |
| | | networks. | |
== ==================== ======== ============= ================================= ======================= | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='sac', | |
# (bool) Whether to use cuda for network and loss computation. | |
cuda=False, | |
# (bool) Whether to belong to on-policy or off-policy algorithm, SAC is an off-policy algorithm. | |
on_policy=False, | |
# (bool) Whether to use priority sampling in buffer. Default to False in SAC. | |
priority=False, | |
# (bool) Whether use Importance Sampling weight to correct biased update. If True, priority must be True. | |
priority_IS_weight=False, | |
# (int) Number of training samples (randomly collected) in replay buffer when training starts. | |
random_collect_size=10000, | |
# (bool) Whether to need policy-specific data in process transition. | |
transition_with_policy_data=True, | |
# (bool) Whether to enable multi-agent training setting. | |
multi_agent=False, | |
model=dict( | |
# (bool) Whether to use double-soft-q-net for target q computation. | |
# For more details, please refer to TD3 about Clipped Double-Q Learning trick. | |
twin_critic=True, | |
# (str) Use reparameterization trick for continous action. | |
action_space='reparameterization', | |
), | |
# learn_mode config | |
learn=dict( | |
# (int) How many updates (iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
update_per_collect=1, | |
# (int) Minibatch size for one gradient descent. | |
batch_size=256, | |
# (float) Learning rate for soft q network. | |
learning_rate_q=3e-4, | |
# (float) Learning rate for policy network. | |
learning_rate_policy=3e-4, | |
# (float) Learning rate for auto temperature parameter `\alpha`. | |
learning_rate_alpha=3e-4, | |
# (float) Used for soft update of the target network, | |
# aka. Interpolation factor in EMA update for target network. | |
target_theta=0.005, | |
# (float) discount factor for the discounted sum of rewards, aka. gamma. | |
discount_factor=0.99, | |
# (float) Entropy regularization coefficient in SAC. | |
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details. | |
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`. | |
alpha=0.2, | |
# (bool) Whether to use auto temperature parameter `\alpha` . | |
# Temperature parameter `\alpha` determines the relative importance of the entropy term against the reward. | |
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details. | |
# Note that: Using auto alpha needs to set the above `learning_rate_alpha`. | |
auto_alpha=True, | |
# (bool) Whether to use auto `\alpha` in log space. | |
log_space=True, | |
# (float) Target policy entropy value for auto temperature (alpha) adjustment. | |
target_entropy=None, | |
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum) | |
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers. | |
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000. | |
# However, interaction with HalfCheetah always gets done with False, | |
# Since we inplace done==True with done==False to keep | |
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``), | |
# when the episode step is greater than max episode step. | |
ignore_done=False, | |
# (float) Weight uniform initialization max range in the last output layer. | |
init_w=3e-3, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training samples collected in one collection procedure. | |
n_sample=1, | |
# (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
unroll_len=1, | |
# (bool) Whether to collect logit in `process_transition`. | |
# In some algorithm like guided cost learning, we need to use logit to train the reward model. | |
collector_logit=False, | |
), | |
eval=dict(), # for compability | |
other=dict( | |
replay_buffer=dict( | |
# (int) Maximum size of replay buffer. Usually, larger buffer size is good | |
# for SAC but cost more storage. | |
replay_buffer_size=1000000, | |
), | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
""" | |
if self._cfg.multi_agent: | |
return 'continuous_maqac', ['ding.model.template.maqac'] | |
else: | |
return 'continuous_qac', ['ding.model.template.qac'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \ | |
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ | |
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
self._twin_critic = self._cfg.model.twin_critic | |
# Weight Init for the last output layer | |
if hasattr(self._model, 'actor_head'): # keep compatibility | |
init_w = self._cfg.learn.init_w | |
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w) | |
self._optimizer_q = Adam( | |
self._model.critic.parameters(), | |
lr=self._cfg.learn.learning_rate_q, | |
) | |
self._optimizer_policy = Adam( | |
self._model.actor.parameters(), | |
lr=self._cfg.learn.learning_rate_policy, | |
) | |
# Algorithm-Specific Config | |
self._gamma = self._cfg.learn.discount_factor | |
if self._cfg.learn.auto_alpha: | |
if self._cfg.learn.target_entropy is None: | |
assert 'action_shape' in self._cfg.model, "SAC need network model with action_shape variable" | |
self._target_entropy = -np.prod(self._cfg.model.action_shape) | |
else: | |
self._target_entropy = self._cfg.learn.target_entropy | |
if self._cfg.learn.log_space: | |
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) | |
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) | |
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad | |
self._alpha = self._log_alpha.detach().exp() | |
self._auto_alpha = True | |
self._log_space = True | |
else: | |
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) | |
self._auto_alpha = True | |
self._log_space = False | |
else: | |
self._alpha = torch.tensor( | |
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 | |
) | |
self._auto_alpha = False | |
# Main and target models | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='momentum', | |
update_kwargs={'theta': self._cfg.learn.target_theta} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
self._learn_model.reset() | |
self._target_model.reset() | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, action, priority. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
training samples. For each element in list, the key of the dict is the name of data items and the \ | |
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
dimension by some utility functions such as ``default_preprocess_learn``. \ | |
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``. | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. | |
""" | |
loss_dict = {} | |
data = default_preprocess_learn( | |
data, | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=False | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._learn_model.train() | |
self._target_model.train() | |
obs = data['obs'] | |
next_obs = data['next_obs'] | |
reward = data['reward'] | |
done = data['done'] | |
# 1. predict q value | |
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] | |
# 2. predict target value | |
with torch.no_grad(): | |
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
next_action = torch.tanh(pred) | |
y = 1 - next_action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
next_log_prob = dist.log_prob(pred).unsqueeze(-1) | |
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True) | |
next_data = {'obs': next_obs, 'action': next_action} | |
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value'] | |
# the value of a policy according to the maximum entropy objective | |
if self._twin_critic: | |
# find min one as target q value | |
target_q_value = torch.min(target_q_value[0], | |
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1) | |
else: | |
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1) | |
# 3. compute q loss | |
if self._twin_critic: | |
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma) | |
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight']) | |
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma) | |
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 | |
else: | |
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma) | |
# 4. update q network | |
self._optimizer_q.zero_grad() | |
if self._twin_critic: | |
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward() | |
else: | |
loss_dict['critic_loss'].backward() | |
self._optimizer_q.step() | |
# 5. evaluate to get action distribution | |
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
action = torch.tanh(pred) | |
y = 1 - action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
log_prob = dist.log_prob(pred).unsqueeze(-1) | |
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True) | |
eval_data = {'obs': obs, 'action': action} | |
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] | |
if self._twin_critic: | |
new_q_value = torch.min(new_q_value[0], new_q_value[1]) | |
# 6. compute policy loss | |
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean() | |
loss_dict['policy_loss'] = policy_loss | |
# 7. update policy network | |
self._optimizer_policy.zero_grad() | |
loss_dict['policy_loss'].backward() | |
self._optimizer_policy.step() | |
# 8. compute alpha loss | |
if self._auto_alpha: | |
if self._log_space: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha = self._log_alpha.detach().exp() | |
else: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha = max(0, self._alpha) | |
loss_dict['total_loss'] = sum(loss_dict.values()) | |
# target update | |
self._target_model.update(self._learn_model.state_dict()) | |
return { | |
'cur_lr_q': self._optimizer_q.defaults['lr'], | |
'cur_lr_p': self._optimizer_policy.defaults['lr'], | |
'priority': td_error_per_sample.abs().tolist(), | |
'td_error': td_error_per_sample.detach().mean().item(), | |
'alpha': self._alpha.item(), | |
'target_q_value': target_q_value.detach().mean().item(), | |
'transformed_log_prob': log_prob.mean().item(), | |
**loss_dict | |
} | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
""" | |
Overview: | |
Return the state_dict of learn mode, usually including model, target_model and optimizers. | |
Returns: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. | |
""" | |
ret = { | |
'model': self._learn_model.state_dict(), | |
'target_model': self._target_model.state_dict(), | |
'optimizer_q': self._optimizer_q.state_dict(), | |
'optimizer_policy': self._optimizer_policy.state_dict(), | |
} | |
if self._auto_alpha: | |
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()}) | |
return ret | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
""" | |
Overview: | |
Load the state_dict variable into policy learn mode. | |
Arguments: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. | |
.. tip:: | |
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
complicated operation. | |
""" | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._target_model.load_state_dict(state_dict['target_model']) | |
self._optimizer_q.load_state_dict(state_dict['optimizer_q']) | |
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy']) | |
if self._auto_alpha: | |
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha']) | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \ | |
collect_model other algorithm-specific arguments such as unroll_len. \ | |
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
""" | |
self._unroll_len = self._cfg.collect.unroll_len | |
self._collect_model = model_wrap(self._model, wrapper_name='base') | |
self._collect_model.reset() | |
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
data, such as the action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ | |
dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency. | |
.. note:: | |
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
with torch.no_grad(): | |
(mu, sigma) = self._collect_model.forward(data, mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
action = torch.tanh(dist.rsample()) | |
output = {'logit': (mu, sigma), 'action': action} | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
saved in replay buffer. For continuous SAC, it contains obs, next_obs, action, reward, done. The logit \ | |
will be also added when ``collector_logit`` is True. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
as input. For continuous SAC, it contains the action and the logit (mu and sigma) of the action. | |
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
reward, done, info, etc. | |
Returns: | |
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
""" | |
if self._cfg.collect.collector_logit: | |
transition = { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'logit': policy_output['logit'], | |
'action': policy_output['action'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
else: | |
transition = { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'action': policy_output['action'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
can be used for training directly. In continuous SAC, a train sample is a processed transition \ | |
(unroll_len=1). | |
Arguments: | |
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
the same format as the return value of ``self._process_transition`` method. | |
Returns: | |
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
as input transitions, but may contain more data for training. | |
""" | |
return get_train_sample(transitions, self._unroll_len) | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Initialize the eval mode of policy, including related attributes and modules. For SAC, it contains the \ | |
eval model, which is equipped with ``base`` model wrapper to ensure compability. | |
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
""" | |
self._eval_model = model_wrap(self._model, wrapper_name='base') | |
self._eval_model.reset() | |
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
key of the dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency. | |
.. note:: | |
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
(mu, sigma) = self._eval_model.forward(data, mode='compute_actor')['logit'] | |
action = torch.tanh(mu) # deterministic_eval | |
output = {'action': action} | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] | |
alpha_loss = ['alpha_loss'] if self._auto_alpha else [] | |
return [ | |
'value_loss' | |
'alpha_loss', | |
'policy_loss', | |
'critic_loss', | |
'cur_lr_q', | |
'cur_lr_p', | |
'target_q_value', | |
'alpha', | |
'td_error', | |
'transformed_log_prob', | |
] + twin_critic + alpha_loss | |
class SQILSACPolicy(SACPolicy): | |
""" | |
Overview: | |
Policy class of continuous SAC algorithm with SQIL extension. | |
SAC paper link: https://arxiv.org/pdf/1801.01290.pdf | |
SQIL paper link: https://arxiv.org/abs/1905.11108 | |
""" | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \ | |
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ | |
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
self._twin_critic = self._cfg.model.twin_critic | |
# Weight Init for the last output layer | |
init_w = self._cfg.learn.init_w | |
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w) | |
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w) | |
self._optimizer_q = Adam( | |
self._model.critic.parameters(), | |
lr=self._cfg.learn.learning_rate_q, | |
) | |
self._optimizer_policy = Adam( | |
self._model.actor.parameters(), | |
lr=self._cfg.learn.learning_rate_policy, | |
) | |
# Algorithm-Specific Config | |
self._gamma = self._cfg.learn.discount_factor | |
if self._cfg.learn.auto_alpha: | |
if self._cfg.learn.target_entropy is None: | |
assert 'action_shape' in self._cfg.model, "SQILSACPolicy need network model with action_shape variable" | |
self._target_entropy = -np.prod(self._cfg.model.action_shape) | |
else: | |
self._target_entropy = self._cfg.learn.target_entropy | |
if self._cfg.learn.log_space: | |
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) | |
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) | |
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad | |
self._alpha = self._log_alpha.detach().exp() | |
self._auto_alpha = True | |
self._log_space = True | |
else: | |
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() | |
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) | |
self._auto_alpha = True | |
self._log_space = False | |
else: | |
self._alpha = torch.tensor( | |
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 | |
) | |
self._auto_alpha = False | |
# Main and target models | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='momentum', | |
update_kwargs={'theta': self._cfg.learn.target_theta} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
self._learn_model.reset() | |
self._target_model.reset() | |
# monitor cossimilarity and entropy switch | |
self._monitor_cos = True | |
self._monitor_entropy = True | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, action, priority. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
training samples. For each element in list, the key of the dict is the name of data items and the \ | |
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
dimension by some utility functions such as ``default_preprocess_learn``. \ | |
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``. | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. note:: | |
For SQIL + SAC, input data is composed of two parts with the same size: agent data and expert data. \ | |
Both of them are relabelled with new reward according to SQIL algorithm. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. | |
""" | |
loss_dict = {} | |
if self._monitor_cos: | |
agent_data = default_preprocess_learn( | |
data[0:len(data) // 2], | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=False | |
) | |
expert_data = default_preprocess_learn( | |
data[len(data) // 2:], | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=False | |
) | |
if self._cuda: | |
agent_data = to_device(agent_data, self._device) | |
expert_data = to_device(expert_data, self._device) | |
data = default_preprocess_learn( | |
data, | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=False | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._learn_model.train() | |
self._target_model.train() | |
obs = data['obs'] | |
next_obs = data['next_obs'] | |
reward = data['reward'] | |
done = data['done'] | |
# 1. predict q value | |
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] | |
# 2. predict target value | |
with torch.no_grad(): | |
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
next_action = torch.tanh(pred) | |
y = 1 - next_action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
next_log_prob = dist.log_prob(pred).unsqueeze(-1) | |
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True) | |
next_data = {'obs': next_obs, 'action': next_action} | |
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value'] | |
# the value of a policy according to the maximum entropy objective | |
if self._twin_critic: | |
# find min one as target q value | |
target_q_value = torch.min(target_q_value[0], | |
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1) | |
else: | |
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1) | |
# 3. compute q loss | |
if self._twin_critic: | |
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma) | |
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight']) | |
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma) | |
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 | |
else: | |
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight']) | |
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma) | |
# 4. update q network | |
self._optimizer_q.zero_grad() | |
if self._twin_critic: | |
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward() | |
else: | |
loss_dict['critic_loss'].backward() | |
self._optimizer_q.step() | |
# 5. evaluate to get action distribution | |
if self._monitor_cos: | |
# agent | |
(mu, sigma) = self._learn_model.forward(agent_data['obs'], mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
action = torch.tanh(pred) | |
y = 1 - action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
agent_log_prob = dist.log_prob(pred).unsqueeze(-1) | |
agent_log_prob = agent_log_prob - torch.log(y).sum(-1, keepdim=True) | |
eval_data = {'obs': agent_data['obs'], 'action': action} | |
agent_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] | |
if self._twin_critic: | |
agent_new_q_value = torch.min(agent_new_q_value[0], agent_new_q_value[1]) | |
# expert | |
(mu, sigma) = self._learn_model.forward(expert_data['obs'], mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
pred = dist.rsample() | |
action = torch.tanh(pred) | |
y = 1 - action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
expert_log_prob = dist.log_prob(pred).unsqueeze(-1) | |
expert_log_prob = expert_log_prob - torch.log(y).sum(-1, keepdim=True) | |
eval_data = {'obs': expert_data['obs'], 'action': action} | |
expert_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] | |
if self._twin_critic: | |
expert_new_q_value = torch.min(expert_new_q_value[0], expert_new_q_value[1]) | |
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit'] | |
dist = Independent(Normal(mu, sigma), 1) | |
# for monitor the entropy of policy | |
if self._monitor_entropy: | |
dist_entropy = dist.entropy() | |
entropy = dist_entropy.mean() | |
pred = dist.rsample() | |
action = torch.tanh(pred) | |
y = 1 - action.pow(2) + 1e-6 | |
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum) | |
log_prob = dist.log_prob(pred).unsqueeze(-1) | |
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True) | |
eval_data = {'obs': obs, 'action': action} | |
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] | |
if self._twin_critic: | |
new_q_value = torch.min(new_q_value[0], new_q_value[1]) | |
# 6. compute policy loss | |
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean() | |
loss_dict['policy_loss'] = policy_loss | |
# 7. update policy network | |
if self._monitor_cos: | |
agent_policy_loss = (self._alpha * agent_log_prob - agent_new_q_value.unsqueeze(-1)).mean() | |
expert_policy_loss = (self._alpha * expert_log_prob - expert_new_q_value.unsqueeze(-1)).mean() | |
loss_dict['agent_policy_loss'] = agent_policy_loss | |
loss_dict['expert_policy_loss'] = expert_policy_loss | |
self._optimizer_policy.zero_grad() | |
loss_dict['agent_policy_loss'].backward() | |
agent_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean() | |
self._optimizer_policy.zero_grad() | |
loss_dict['expert_policy_loss'].backward() | |
expert_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean() | |
cos = nn.CosineSimilarity(dim=0) | |
cos_similarity = cos(agent_grad, expert_grad) | |
self._optimizer_policy.zero_grad() | |
loss_dict['policy_loss'].backward() | |
self._optimizer_policy.step() | |
# 8. compute alpha loss | |
if self._auto_alpha: | |
if self._log_space: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha = self._log_alpha.detach().exp() | |
else: | |
log_prob = log_prob + self._target_entropy | |
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean() | |
self._alpha_optim.zero_grad() | |
loss_dict['alpha_loss'].backward() | |
self._alpha_optim.step() | |
self._alpha = max(0, self._alpha) | |
loss_dict['total_loss'] = sum(loss_dict.values()) | |
# target update | |
self._target_model.update(self._learn_model.state_dict()) | |
var_monitor = { | |
'cur_lr_q': self._optimizer_q.defaults['lr'], | |
'cur_lr_p': self._optimizer_policy.defaults['lr'], | |
'priority': td_error_per_sample.abs().tolist(), | |
'td_error': td_error_per_sample.detach().mean().item(), | |
'agent_td_error': td_error_per_sample.detach().chunk(2, dim=0)[0].mean().item(), | |
'expert_td_error': td_error_per_sample.detach().chunk(2, dim=0)[1].mean().item(), | |
'alpha': self._alpha.item(), | |
'target_q_value': target_q_value.detach().mean().item(), | |
'mu': mu.detach().mean().item(), | |
'sigma': sigma.detach().mean().item(), | |
'q_value0': new_q_value[0].detach().mean().item(), | |
'q_value1': new_q_value[1].detach().mean().item(), | |
**loss_dict, | |
} | |
if self._monitor_cos: | |
var_monitor['cos_similarity'] = cos_similarity.item() | |
if self._monitor_entropy: | |
var_monitor['entropy'] = entropy.item() | |
return var_monitor | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] | |
alpha_loss = ['alpha_loss'] if self._auto_alpha else [] | |
cos_similarity = ['cos_similarity'] if self._monitor_cos else [] | |
entropy = ['entropy'] if self._monitor_entropy else [] | |
return [ | |
'value_loss' | |
'alpha_loss', | |
'policy_loss', | |
'critic_loss', | |
'cur_lr_q', | |
'cur_lr_p', | |
'target_q_value', | |
'alpha', | |
'td_error', | |
'agent_td_error', | |
'expert_td_error', | |
'mu', | |
'sigma', | |
'q_value0', | |
'q_value1', | |
] + twin_critic + alpha_loss + cos_similarity + entropy | |