Spaces:
Build error
Build error
import rich | |
import random | |
import pickle | |
import os | |
import numpy as np | |
import codecs as cs | |
from torch.utils import data | |
from os.path import join as pjoin | |
from rich.progress import track | |
import json | |
import spacy | |
class Text2MotionDatasetCB(data.Dataset): | |
def __init__( | |
self, | |
data_root, | |
split, | |
mean, | |
std, | |
max_motion_length=196, | |
min_motion_length=20, | |
unit_length=4, | |
fps=20, | |
tmpFile=True, | |
tiny=False, | |
debug=False, | |
stage='lm_pretrain', | |
code_path='VQVAE', | |
task_path=None, | |
std_text=False, | |
**kwargs, | |
): | |
self.tiny = tiny | |
self.unit_length = unit_length | |
# Data mean and std | |
self.mean = mean | |
self.std = std | |
# Data path | |
split = 'train' | |
split_file = pjoin(data_root, split + '.txt') | |
motion_dir = pjoin(data_root, code_path) | |
text_dir = pjoin(data_root, 'texts') | |
if task_path: | |
instructions = task_path | |
elif stage == 'lm_pretrain': | |
instructions = pjoin(data_root, 'template_pretrain.json') | |
elif stage in ['lm_instruct', "lm_rl"]: | |
instructions = pjoin(data_root, 'template_instructions.json') | |
else: | |
raise NotImplementedError(f"stage {stage} not implemented") | |
# Data id list | |
self.id_list = [] | |
with cs.open(split_file, "r") as f: | |
for line in f.readlines(): | |
self.id_list.append(line.strip()) | |
# Debug mode | |
if tiny or debug: | |
enumerator = enumerate(self.id_list) | |
maxdata = 100 | |
subset = '_tiny' | |
else: | |
enumerator = enumerate( | |
track( | |
self.id_list, | |
f"Loading HumanML3D {split}", | |
)) | |
maxdata = 1e10 | |
subset = '' | |
new_name_list = [] | |
data_dict = {} | |
# Fast loading | |
for i, name in enumerator: | |
if len(new_name_list) > maxdata: | |
break | |
try: | |
# Load motion tokens | |
m_token_list = np.load(pjoin(motion_dir, f'{name}.npy')) | |
# Read text | |
with cs.open(pjoin(text_dir, name + '.txt')) as f: | |
text_data = [] | |
flag = False | |
lines = f.readlines() | |
for line in lines: | |
try: | |
text_dict = {} | |
line_split = line.strip().split('#') | |
caption = line_split[0] | |
t_tokens = line_split[1].split(' ') | |
f_tag = float(line_split[2]) | |
to_tag = float(line_split[3]) | |
f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
text_dict['caption'] = caption | |
text_dict['tokens'] = t_tokens | |
if f_tag == 0.0 and to_tag == 0.0: | |
flag = True | |
text_data.append(text_dict) | |
else: | |
m_token_list_new = [ | |
tokens[int(f_tag * fps / unit_length | |
):int(to_tag * fps / | |
unit_length)] | |
for tokens in m_token_list | |
if int(f_tag * fps / unit_length) < | |
int(to_tag * fps / unit_length) | |
] | |
if len(m_token_list_new) == 0: | |
continue | |
new_name = '%s_%f_%f' % (name, f_tag, | |
to_tag) | |
data_dict[new_name] = { | |
'm_token_list': m_token_list_new, | |
'text': [text_dict] | |
} | |
new_name_list.append(new_name) | |
except: | |
pass | |
if flag: | |
data_dict[name] = { | |
'm_token_list': m_token_list, | |
'text': text_data | |
} | |
new_name_list.append(name) | |
except: | |
pass | |
if tmpFile: | |
os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True) | |
with open( | |
pjoin(data_root, | |
f'tmp/{split}{subset}_tokens_data.pkl'), | |
'wb') as file: | |
pickle.dump(data_dict, file) | |
with open( | |
pjoin(data_root, | |
f'tmp/{split}{subset}_tokens_index.pkl'), | |
'wb') as file: | |
pickle.dump(new_name_list, file) | |
self.data_dict = data_dict | |
self.name_list = new_name_list | |
self.nlp = spacy.load('en_core_web_sm') | |
self.std_text = std_text | |
self.instructions = json.load(open(instructions, 'r')) | |
self.tasks = [] | |
for task in self.instructions.keys(): | |
for subtask in self.instructions[task].keys(): | |
self.tasks.append(self.instructions[task][subtask]) | |
def __len__(self): | |
return len(self.name_list) * len(self.tasks) | |
def __getitem__(self, item): | |
data_idx = item % len(self.name_list) | |
task_idx = item // len(self.name_list) | |
data = self.data_dict[self.name_list[data_idx]] | |
m_token_list, text_list = data['m_token_list'], data['text'] | |
m_tokens = random.choice(m_token_list) | |
text_data = random.choice(text_list) | |
caption = text_data['caption'] | |
if self.std_text: | |
doc = self.nlp(caption) | |
word_list = [] | |
pos_list = [] | |
for token in doc: | |
word = token.text | |
if not word.isalpha(): | |
continue | |
if (token.pos_ == 'NOUN' | |
or token.pos_ == 'VERB') and (word != 'left'): | |
word_list.append(token.lemma_) | |
else: | |
word_list.append(word) | |
pos_list.append(token.pos_) | |
caption = ' '.join(word_list) | |
all_captions = [ | |
' '.join([token.split('/')[0] for token in text_dic['tokens']]) | |
for text_dic in text_list | |
] | |
coin = np.random.choice([False, False, True]) | |
if coin: | |
# drop one token at the head or tail | |
coin2 = np.random.choice([True, False]) | |
if coin2: | |
m_tokens = m_tokens[:-1] | |
else: | |
m_tokens = m_tokens[1:] | |
m_tokens_len = m_tokens.shape[0] | |
tasks = self.tasks[task_idx] | |
return caption, m_tokens, m_tokens_len, None, None, None, None, all_captions, tasks | |