MotionGPT / mGPT /data /humanml /dataset_t2m_cb.py
bill-jiang's picture
Init
4409449
raw
history blame
7.25 kB
import rich
import random
import pickle
import os
import numpy as np
import codecs as cs
from torch.utils import data
from os.path import join as pjoin
from rich.progress import track
import json
import spacy
class Text2MotionDatasetCB(data.Dataset):
def __init__(
self,
data_root,
split,
mean,
std,
max_motion_length=196,
min_motion_length=20,
unit_length=4,
fps=20,
tmpFile=True,
tiny=False,
debug=False,
stage='lm_pretrain',
code_path='VQVAE',
task_path=None,
std_text=False,
**kwargs,
):
self.tiny = tiny
self.unit_length = unit_length
# Data mean and std
self.mean = mean
self.std = std
# Data path
split = 'train'
split_file = pjoin(data_root, split + '.txt')
motion_dir = pjoin(data_root, code_path)
text_dir = pjoin(data_root, 'texts')
if task_path:
instructions = task_path
elif stage == 'lm_pretrain':
instructions = pjoin(data_root, 'template_pretrain.json')
elif stage in ['lm_instruct', "lm_rl"]:
instructions = pjoin(data_root, 'template_instructions.json')
else:
raise NotImplementedError(f"stage {stage} not implemented")
# Data id list
self.id_list = []
with cs.open(split_file, "r") as f:
for line in f.readlines():
self.id_list.append(line.strip())
# Debug mode
if tiny or debug:
enumerator = enumerate(self.id_list)
maxdata = 100
subset = '_tiny'
else:
enumerator = enumerate(
track(
self.id_list,
f"Loading HumanML3D {split}",
))
maxdata = 1e10
subset = ''
new_name_list = []
data_dict = {}
# Fast loading
for i, name in enumerator:
if len(new_name_list) > maxdata:
break
try:
# Load motion tokens
m_token_list = np.load(pjoin(motion_dir, f'{name}.npy'))
# Read text
with cs.open(pjoin(text_dir, name + '.txt')) as f:
text_data = []
flag = False
lines = f.readlines()
for line in lines:
try:
text_dict = {}
line_split = line.strip().split('#')
caption = line_split[0]
t_tokens = line_split[1].split(' ')
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
text_dict['caption'] = caption
text_dict['tokens'] = t_tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
m_token_list_new = [
tokens[int(f_tag * fps / unit_length
):int(to_tag * fps /
unit_length)]
for tokens in m_token_list
if int(f_tag * fps / unit_length) <
int(to_tag * fps / unit_length)
]
if len(m_token_list_new) == 0:
continue
new_name = '%s_%f_%f' % (name, f_tag,
to_tag)
data_dict[new_name] = {
'm_token_list': m_token_list_new,
'text': [text_dict]
}
new_name_list.append(new_name)
except:
pass
if flag:
data_dict[name] = {
'm_token_list': m_token_list,
'text': text_data
}
new_name_list.append(name)
except:
pass
if tmpFile:
os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True)
with open(
pjoin(data_root,
f'tmp/{split}{subset}_tokens_data.pkl'),
'wb') as file:
pickle.dump(data_dict, file)
with open(
pjoin(data_root,
f'tmp/{split}{subset}_tokens_index.pkl'),
'wb') as file:
pickle.dump(new_name_list, file)
self.data_dict = data_dict
self.name_list = new_name_list
self.nlp = spacy.load('en_core_web_sm')
self.std_text = std_text
self.instructions = json.load(open(instructions, 'r'))
self.tasks = []
for task in self.instructions.keys():
for subtask in self.instructions[task].keys():
self.tasks.append(self.instructions[task][subtask])
def __len__(self):
return len(self.name_list) * len(self.tasks)
def __getitem__(self, item):
data_idx = item % len(self.name_list)
task_idx = item // len(self.name_list)
data = self.data_dict[self.name_list[data_idx]]
m_token_list, text_list = data['m_token_list'], data['text']
m_tokens = random.choice(m_token_list)
text_data = random.choice(text_list)
caption = text_data['caption']
if self.std_text:
doc = self.nlp(caption)
word_list = []
pos_list = []
for token in doc:
word = token.text
if not word.isalpha():
continue
if (token.pos_ == 'NOUN'
or token.pos_ == 'VERB') and (word != 'left'):
word_list.append(token.lemma_)
else:
word_list.append(word)
pos_list.append(token.pos_)
caption = ' '.join(word_list)
all_captions = [
' '.join([token.split('/')[0] for token in text_dic['tokens']])
for text_dic in text_list
]
coin = np.random.choice([False, False, True])
if coin:
# drop one token at the head or tail
coin2 = np.random.choice([True, False])
if coin2:
m_tokens = m_tokens[:-1]
else:
m_tokens = m_tokens[1:]
m_tokens_len = m_tokens.shape[0]
tasks = self.tasks[task_idx]
return caption, m_tokens, m_tokens_len, None, None, None, None, all_captions, tasks