EzAudio / src /models /utils /modules.py
OpenSound's picture
Upload 84 files
b9d6819 verified
raw
history blame
12.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.cuda.amp import autocast
import math
import einops
from einops import rearrange, repeat
from inspect import isfunction
from .timm import trunc_normal_
# disable in checkpoint mode
# @torch.jit.script
def film_modulate(x, shift, scale):
return x * (1 + scale) + shift
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256,
out_size=None):
super().__init__()
if out_size is None:
out_size = hidden_size
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, out_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
t_freq = timestep_embedding(t, self.frequency_embedding_size).type(
self.mlp[0].weight.dtype)
t_emb = self.mlp(t_freq)
return t_emb
def patchify(imgs, patch_size, input_type='2d'):
if input_type == '2d':
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
elif input_type == '1d':
x = einops.rearrange(imgs, 'B C (h p1) -> B h (p1 C)', p1=patch_size)
return x
def unpatchify(x, channels=3, input_type='2d', img_size=None):
if input_type == '2d':
patch_size = int((x.shape[2] // channels) ** 0.5)
# h = w = int(x.shape[1] ** .5)
h, w = img_size[0] // patch_size, img_size[1] // patch_size
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h,
p1=patch_size, p2=patch_size)
elif input_type == '1d':
patch_size = int((x.shape[2] // channels))
h = x.shape[1]
assert patch_size * channels == x.shape[2]
x = einops.rearrange(x, 'B h (p1 C) -> B C (h p1)', h=h, p1=patch_size)
return x
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding
"""
def __init__(self, patch_size, in_chans=3, embed_dim=768, input_type='2d'):
super().__init__()
self.patch_size = patch_size
self.input_type = input_type
if input_type == '2d':
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)
elif input_type == '1d':
self.proj = nn.Conv1d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)
def forward(self, x):
if self.input_type == '2d':
B, C, H, W = x.shape
assert H % self.patch_size == 0 and W % self.patch_size == 0
elif self.input_type == '1d':
B, C, H = x.shape
assert H % self.patch_size == 0
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class PositionalConvEmbedding(nn.Module):
"""
Relative positional embedding used in HuBERT
"""
def __init__(self, dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
bias=True
)
self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
def forward(self, x):
# B C T
x = self.conv(x)
x = F.gelu(x[:, :, :-1])
return x
class SinusoidalPositionalEncoding(nn.Module):
def __init__(self, dim, length):
super(SinusoidalPositionalEncoding, self).__init__()
self.length = length
self.dim = dim
self.register_buffer('pe', self._generate_positional_encoding(length, dim))
def _generate_positional_encoding(self, length, dim):
pe = torch.zeros(length, dim)
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
return pe
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return x
class PE_wrapper(nn.Module):
def __init__(self, dim=768, method='abs', length=None, **kwargs):
super().__init__()
self.method = method
if method == 'abs':
# init absolute pe like UViT
self.length = length
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
trunc_normal_(self.abs_pe, std=.02)
elif method == 'conv':
self.conv_pe = PositionalConvEmbedding(dim=dim, **kwargs)
elif method == 'sinu':
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
elif method == 'none':
# skip pe
self.id = nn.Identity()
else:
raise NotImplementedError
def forward(self, x):
if self.method == 'abs':
_, L, _ = x.shape
assert L <= self.length
x = x + self.abs_pe[:, :L, :]
elif self.method == 'conv':
x = x + self.conv_pe(x)
elif self.method == 'sinu':
x = self.sinu_pe(x)
elif self.method == 'none':
x = self.id(x)
else:
raise NotImplementedError
return x
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none",
bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate, approximate=self.approximate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32),
approximate=self.approximate).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class GEGLU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
# disable in checkpoint mode
# @torch.jit.script
def snake_beta(x, alpha, beta):
return x + beta * torch.sin(x * alpha).pow(2)
class Snake(nn.Module):
def __init__(self, dim_in, dim_out, bias,
alpha_trainable=True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
def forward(self, x):
x = self.proj(x)
x = snake_beta(x, self.alpha, self.beta)
return x
class GESnake(nn.Module):
def __init__(self, dim_in, dim_out, bias,
alpha_trainable=True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
def forward(self, x):
x = self.proj(x)
x, gate = x.chunk(2, dim=-1)
return x * snake_beta(gate, self.alpha, self.beta)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
dropout=0.0,
activation_fn="geglu",
final_dropout=False,
inner_dim=None,
bias=True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
elif activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "snake":
act_fn = Snake(dim, inner_dim, bias=bias)
elif activation_fn == "gesnake":
act_fn = GESnake(dim, inner_dim, bias=bias)
else:
raise NotImplementedError
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states