|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import math |
|
import warnings |
|
import einops |
|
import torch.utils.checkpoint |
|
import yaml |
|
import torch.nn.functional as F |
|
from .attention import Attention |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
|
|
class PositionalConvEmbedding(nn.Module): |
|
""" |
|
Relative positional embedding used in HuBERT |
|
""" |
|
|
|
def __init__(self, dim=768, kernel_size=128, groups=16): |
|
super().__init__() |
|
self.conv = nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size=kernel_size, |
|
padding=kernel_size // 2, |
|
groups=groups, |
|
bias=True |
|
) |
|
self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) |
|
|
|
def forward(self, x): |
|
x = x.transpose(2, 1) |
|
|
|
x = self.conv(x) |
|
x = F.gelu(x[:, :, :-1]) |
|
x = x.transpose(2, 1) |
|
return x |
|
|
|
|
|
class SinusoidalPositionalEncoding(nn.Module): |
|
def __init__(self, dim, length): |
|
super(SinusoidalPositionalEncoding, self).__init__() |
|
self.length = length |
|
self.dim = dim |
|
self.register_buffer('pe', self._generate_positional_encoding(length, dim)) |
|
|
|
def _generate_positional_encoding(self, length, dim): |
|
pe = torch.zeros(length, dim) |
|
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)) |
|
|
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
pe = pe.unsqueeze(0) |
|
return pe |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1)] |
|
return x |
|
|
|
|
|
class PE_wrapper(nn.Module): |
|
def __init__(self, dim=768, method='none', length=None): |
|
super().__init__() |
|
self.method = method |
|
if method == 'abs': |
|
|
|
self.length = length |
|
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim)) |
|
trunc_normal_(self.abs_pe, std=.02) |
|
elif method == 'conv': |
|
self.conv_pe = PositionalConvEmbedding(dim=dim) |
|
elif method == 'sinu': |
|
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length) |
|
elif method == 'none': |
|
|
|
self.id = nn.Identity() |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, x): |
|
if self.method == 'abs': |
|
_, L, _ = x.shape |
|
assert L <= self.length |
|
x = x + self.abs_pe[:, :L, :] |
|
elif self.method == 'conv': |
|
x = x + self.conv_pe(x) |
|
elif self.method == 'sinu': |
|
x = self.sinu_pe(x) |
|
elif self.method == 'none': |
|
x = self.id(x) |
|
else: |
|
raise NotImplementedError |
|
return x |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
class DiTBlock(nn.Module): |
|
""" |
|
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. |
|
""" |
|
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, skip=False, skip_norm=True, use_checkpoint=True, **block_kwargs): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) |
|
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 6 * hidden_size, bias=True) |
|
) |
|
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) if skip else None |
|
self.skip_norm = nn.LayerNorm(2 * hidden_size, elementwise_affine=False, eps=1e-6) if skip_norm else nn.Identity() |
|
self.use_checkpoint = use_checkpoint |
|
|
|
def forward(self, x, c, skip=None): |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint(self._forward, x, c, skip) |
|
else: |
|
return self._forward(x, c, skip) |
|
|
|
def _forward(self, x, c, skip=None): |
|
if self.skip_linear is not None: |
|
cat = torch.cat([x, skip], dim=-1) |
|
cat = self.skip_norm(cat) |
|
x = self.skip_linear(cat) |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) |
|
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) |
|
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
def __init__(self, hidden_size, output_dim): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, output_dim, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class UDiT(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone. |
|
""" |
|
def __init__( |
|
self, |
|
input_dim=256, |
|
output_dim=128, |
|
pos_method='none', |
|
pos_length=500, |
|
timbre_dim=512, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
use_checkpoint=True |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.input_proj = nn.Linear(input_dim, hidden_size, bias=True) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.pos_embed = PE_wrapper(dim=hidden_size, method=pos_method, length=pos_length) |
|
self.timbre_proj = nn.Linear(timbre_dim, hidden_size, bias=True) |
|
|
|
self.in_blocks = nn.ModuleList([ |
|
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) for _ in range(depth // 2) |
|
]) |
|
self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) |
|
self.out_blocks = nn.ModuleList([ |
|
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2) |
|
]) |
|
|
|
self.final_layer = FinalLayer(hidden_size, output_dim) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_(self.input_proj.weight, std=0.02) |
|
nn.init.normal_(self.timbre_proj.weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.in_blocks: |
|
nn.init.constant_(self.mid_block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.mid_block.adaLN_modulation[-1].bias, 0) |
|
|
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
for block in self.out_blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def forward(self, x, timesteps, mixture, timbre): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
x = x.transpose(2,1) |
|
mixture = mixture.transpose(2,1) |
|
x = self.input_proj(torch.cat((x, mixture), dim=-1)) |
|
x = self.pos_embed(x) |
|
if not torch.is_tensor(timesteps): |
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device) |
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(x.device) |
|
t = self.t_embedder(timesteps) |
|
timbre = self.timbre_proj(timbre) |
|
c = t + timbre |
|
|
|
skips = [] |
|
for blk in self.in_blocks: |
|
x = blk(x, c) |
|
skips.append(x) |
|
|
|
x = self.mid_block(x, c) |
|
|
|
for blk in self.out_blocks: |
|
x = blk(x, c, skips.pop()) |
|
|
|
x = self.final_layer(x, c) |
|
x = x.transpose(2, 1) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
def DiT_XL_2(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) |
|
|
|
def DiT_XL_4(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) |
|
|
|
def DiT_XL_8(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) |
|
|
|
def DiT_L_2(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) |
|
|
|
def DiT_L_4(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) |
|
|
|
def DiT_L_8(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) |
|
|
|
def DiT_B_2(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) |
|
|
|
def DiT_B_4(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) |
|
|
|
def DiT_B_8(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def DiT_S_2(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) |
|
|
|
def DiT_S_4(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) |
|
|
|
def DiT_S_8(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) |
|
|
|
|
|
DiT_models = { |
|
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, |
|
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, |
|
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, |
|
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, |
|
} |
|
|
|
if __name__ == "__main__": |
|
with open('/export/corpora7/HW/DPMTSE-main/src/config/DiffTSE_udit_conv_v_b_1000.yaml', 'r') as fp: |
|
config = yaml.safe_load(fp) |
|
device = 'cuda' |
|
|
|
model = UDiT( |
|
**config['diffwrap']['UDiT'] |
|
).to(device) |
|
|
|
x = torch.rand((1, 128, 150)).to(device) |
|
t = torch.randint(0, 1000, (1, )).long().to(device) |
|
mixture = torch.rand((1, 128, 150)).to(device) |
|
timbre = torch.rand((1, 512)).to(device) |
|
|
|
y = model(x, t, mixture, timbre) |
|
print(y.shape) |
|
|