SoloAudio / model /udit.py
anonymous9a7b
1
f032e68
raw
history blame
18.5 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import torch
import torch.nn as nn
import numpy as np
import math
import warnings
import einops
import torch.utils.checkpoint
import yaml
import torch.nn.functional as F
from .attention import Attention
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PositionalConvEmbedding(nn.Module):
"""
Relative positional embedding used in HuBERT
"""
def __init__(self, dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
bias=True
)
self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
def forward(self, x):
x = x.transpose(2, 1)
# B C T
x = self.conv(x)
x = F.gelu(x[:, :, :-1])
x = x.transpose(2, 1)
return x
class SinusoidalPositionalEncoding(nn.Module):
def __init__(self, dim, length):
super(SinusoidalPositionalEncoding, self).__init__()
self.length = length
self.dim = dim
self.register_buffer('pe', self._generate_positional_encoding(length, dim))
def _generate_positional_encoding(self, length, dim):
pe = torch.zeros(length, dim)
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
return pe
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return x
class PE_wrapper(nn.Module):
def __init__(self, dim=768, method='none', length=None):
super().__init__()
self.method = method
if method == 'abs':
# init absolute pe like UViT
self.length = length
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
trunc_normal_(self.abs_pe, std=.02)
elif method == 'conv':
self.conv_pe = PositionalConvEmbedding(dim=dim)
elif method == 'sinu':
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
elif method == 'none':
# skip pe
self.id = nn.Identity()
else:
raise NotImplementedError
def forward(self, x):
if self.method == 'abs':
_, L, _ = x.shape
assert L <= self.length
x = x + self.abs_pe[:, :L, :]
elif self.method == 'conv':
x = x + self.conv_pe(x)
elif self.method == 'sinu':
x = self.sinu_pe(x)
elif self.method == 'none':
x = self.id(x)
else:
raise NotImplementedError
return x
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, skip=False, skip_norm=True, use_checkpoint=True, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) if skip else None
self.skip_norm = nn.LayerNorm(2 * hidden_size, elementwise_affine=False, eps=1e-6) if skip_norm else nn.Identity()
self.use_checkpoint = use_checkpoint
def forward(self, x, c, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, c, skip)
else:
return self._forward(x, c, skip)
def _forward(self, x, c, skip=None):
if self.skip_linear is not None:
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, output_dim):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, output_dim, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class UDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_dim=256,
output_dim=128,
pos_method='none',
pos_length=500,
timbre_dim=512,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
use_checkpoint=True
):
super().__init__()
self.num_heads = num_heads
self.input_proj = nn.Linear(input_dim, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.pos_embed = PE_wrapper(dim=hidden_size, method=pos_method, length=pos_length)
self.timbre_proj = nn.Linear(timbre_dim, hidden_size, bias=True)
self.in_blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
])
self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
])
self.final_layer = FinalLayer(hidden_size, output_dim)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
nn.init.normal_(self.input_proj.weight, std=0.02)
nn.init.normal_(self.timbre_proj.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.in_blocks:
nn.init.constant_(self.mid_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.mid_block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
for block in self.out_blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, timesteps, mixture, timbre):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = x.transpose(2,1)
mixture = mixture.transpose(2,1)
x = self.input_proj(torch.cat((x, mixture), dim=-1))
x = self.pos_embed(x)
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(x.device)
t = self.t_embedder(timesteps) # (N, D)
timbre = self.timbre_proj(timbre)
c = t + timbre # (N, D)
skips = []
for blk in self.in_blocks:
x = blk(x, c)
skips.append(x)
x = self.mid_block(x, c)
for blk in self.out_blocks:
x = blk(x, c, skips.pop())
x = self.final_layer(x, c) # (N, T, out_dim)
x = x.transpose(2, 1)
return x
#################################################################################
# DiT Configs #
#################################################################################
def DiT_XL_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
def DiT_XL_4(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
def DiT_XL_8(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def DiT_L_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
def DiT_L_4(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
def DiT_L_8(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
def DiT_B_2(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
def DiT_B_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def DiT_B_8(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_S_2(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiT_S_4(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def DiT_S_8(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
DiT_models = {
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
}
if __name__ == "__main__":
with open('/export/corpora7/HW/DPMTSE-main/src/config/DiffTSE_udit_conv_v_b_1000.yaml', 'r') as fp:
config = yaml.safe_load(fp)
device = 'cuda'
model = UDiT(
**config['diffwrap']['UDiT']
).to(device)
x = torch.rand((1, 128, 150)).to(device)
t = torch.randint(0, 1000, (1, )).long().to(device)
mixture = torch.rand((1, 128, 150)).to(device)
timbre = torch.rand((1, 512)).to(device)
y = model(x, t, mixture, timbre)
print(y.shape)