Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from streamlit_chat import message
|
|
|
3 |
from langchain.document_loaders.csv_loader import CSVLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -9,18 +10,23 @@ from langchain.memory import ConversationBufferMemory
|
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
import sys
|
11 |
|
|
|
12 |
st.title("Chat with CSV using open source LLM Inference Point π¦π¦")
|
|
|
13 |
st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with β€οΈ </a></h3>", unsafe_allow_html=True)
|
14 |
|
|
|
15 |
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
|
16 |
|
17 |
if uploaded_file :
|
|
|
18 |
#use tempfile because CSVLoader only accepts a file_path
|
19 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
20 |
tmp_file.write(uploaded_file.getvalue())
|
21 |
tmp_file_path = tmp_file.name
|
22 |
|
23 |
db = DB_FAISS_PATH = "vectorstore/db_faiss"
|
|
|
24 |
loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','})
|
25 |
data = loader.load()
|
26 |
db.save_local(DB_FAISS_PATH)
|
@@ -29,17 +35,25 @@ if uploaded_file :
|
|
29 |
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
|
30 |
|
31 |
def conversational_chat(query):
|
|
|
32 |
result = chain({"question": query, "chat_history": st.session_state['history']})
|
|
|
33 |
st.session_state['history'].append((query, result["answer"]))
|
34 |
return result["answer"]
|
35 |
|
|
|
36 |
if 'history' not in st.session_state:
|
|
|
37 |
st.session_state['history'] = []
|
38 |
|
|
|
39 |
if 'generated' not in st.session_state:
|
|
|
40 |
st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " π€"]
|
41 |
|
|
|
42 |
if 'past' not in st.session_state:
|
|
|
43 |
st.session_state['past'] = ["Hey ! π"]
|
44 |
|
45 |
#container for the chat history
|
@@ -56,13 +70,19 @@ if uploaded_file :
|
|
56 |
if submit_button and user_input:
|
57 |
output = conversational_chat(user_input)
|
58 |
|
|
|
59 |
st.session_state['past'].append(user_input)
|
|
|
60 |
st.session_state['generated'].append(output)
|
61 |
|
|
|
62 |
if st.session_state['generated']:
|
63 |
with response_container:
|
|
|
64 |
for i in range(len(st.session_state['generated'])):
|
|
|
65 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
|
|
|
66 |
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
|
67 |
|
68 |
# Split the text into Chunks
|
@@ -95,8 +115,8 @@ qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever
|
|
95 |
|
96 |
# Insert a chat message container.
|
97 |
with st.chat_message("user"):
|
98 |
-
|
99 |
-
|
100 |
|
101 |
# Display a chat input widget.
|
102 |
st.chat_input("Say something")
|
|
|
1 |
import streamlit as st
|
2 |
from streamlit_chat import message
|
3 |
+
# Initialize the CSVLoader to load the uploaded CSV file
|
4 |
from langchain.document_loaders.csv_loader import CSVLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
import sys
|
12 |
|
13 |
+
# Display the title of the web page
|
14 |
st.title("Chat with CSV using open source LLM Inference Point π¦π¦")
|
15 |
+
# Display a markdown message with additional information
|
16 |
st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with β€οΈ </a></h3>", unsafe_allow_html=True)
|
17 |
|
18 |
+
# Allow users to upload a CSV file
|
19 |
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
|
20 |
|
21 |
if uploaded_file :
|
22 |
+
# Initialize the CSVLoader to load the uploaded CSV file
|
23 |
#use tempfile because CSVLoader only accepts a file_path
|
24 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
25 |
tmp_file.write(uploaded_file.getvalue())
|
26 |
tmp_file_path = tmp_file.name
|
27 |
|
28 |
db = DB_FAISS_PATH = "vectorstore/db_faiss"
|
29 |
+
# Initialize the CSVLoader to load the uploaded CSV file
|
30 |
loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','})
|
31 |
data = loader.load()
|
32 |
db.save_local(DB_FAISS_PATH)
|
|
|
35 |
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
|
36 |
|
37 |
def conversational_chat(query):
|
38 |
+
# Maintain and display the chat history
|
39 |
result = chain({"question": query, "chat_history": st.session_state['history']})
|
40 |
+
# Maintain and display the chat history
|
41 |
st.session_state['history'].append((query, result["answer"]))
|
42 |
return result["answer"]
|
43 |
|
44 |
+
# Maintain and display the chat history
|
45 |
if 'history' not in st.session_state:
|
46 |
+
# Maintain and display the chat history
|
47 |
st.session_state['history'] = []
|
48 |
|
49 |
+
# Maintain and display the chat history
|
50 |
if 'generated' not in st.session_state:
|
51 |
+
# Maintain and display the chat history
|
52 |
st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " π€"]
|
53 |
|
54 |
+
# Maintain and display the chat history
|
55 |
if 'past' not in st.session_state:
|
56 |
+
# Maintain and display the chat history
|
57 |
st.session_state['past'] = ["Hey ! π"]
|
58 |
|
59 |
#container for the chat history
|
|
|
70 |
if submit_button and user_input:
|
71 |
output = conversational_chat(user_input)
|
72 |
|
73 |
+
# Maintain and display the chat history
|
74 |
st.session_state['past'].append(user_input)
|
75 |
+
# Maintain and display the chat history
|
76 |
st.session_state['generated'].append(output)
|
77 |
|
78 |
+
# Maintain and display the chat history
|
79 |
if st.session_state['generated']:
|
80 |
with response_container:
|
81 |
+
# Maintain and display the chat history
|
82 |
for i in range(len(st.session_state['generated'])):
|
83 |
+
# Maintain and display the chat history
|
84 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
|
85 |
+
# Maintain and display the chat history
|
86 |
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
|
87 |
|
88 |
# Split the text into Chunks
|
|
|
115 |
|
116 |
# Insert a chat message container.
|
117 |
with st.chat_message("user"):
|
118 |
+
st.write("Hello π")
|
119 |
+
st.line_chart(np.random.randn(30, 3))
|
120 |
|
121 |
# Display a chat input widget.
|
122 |
st.chat_input("Say something")
|