Spaces:
Sleeping
Sleeping
import langchain | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.vectorstores import FAISS | |
from zipfile import ZipFile | |
import gradio as gr | |
import openpyxl | |
import os | |
import shutil | |
from langchain.schema import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import tiktoken | |
import secrets | |
import time | |
import requests | |
import tempfile | |
from groq import Groq | |
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
# create the length function | |
def tiktoken_len(text): | |
tokens = tokenizer.encode( | |
text, | |
disallowed_special=() | |
) | |
return len(tokens) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=750, | |
chunk_overlap=350, | |
length_function=tiktoken_len, | |
separators=["\n\n", "\n", " ", ""] | |
) | |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") | |
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'}) | |
def reset_database(ui_session_id): | |
session_id = f"PDFAISS-{ui_session_id}" | |
if 'drive' in session_id: | |
print("RESET DATABASE: session_id contains 'drive' !!") | |
return None | |
try: | |
shutil.rmtree(session_id) | |
except: | |
print(f'no {session_id} directory present') | |
try: | |
os.remove(f"{session_id}.zip") | |
except: | |
print("no {session_id}.zip present") | |
return None | |
def is_duplicate(split_docs,db): | |
epsilon=0.0 | |
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}") | |
for i in range(min(3,len(split_docs))): | |
query = split_docs[i].page_content | |
docs = db.similarity_search_with_score(query,k=1) | |
_ , score = docs[0] | |
epsilon += score | |
print(f"DUPLICATE: epsilon: {epsilon}") | |
return epsilon < 0.1 | |
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1): | |
progress(progress_step,desc="merging docs") | |
if len(split_docs)==0: | |
print("MERGE to db: NO docs!!") | |
return | |
filename = split_docs[0].metadata['source'] | |
if is_duplicate(split_docs,db): | |
print(f"MERGE: Document is duplicated: {filename}") | |
return | |
print(f"MERGE: number of split docs: {len(split_docs)}") | |
batch = 10 | |
for i in range(0, len(split_docs), batch): | |
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks") | |
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings) | |
db.merge_from(db1) | |
return db | |
def merge_pdf_to_db(filename,db,progress,progress_step=0.1): | |
progress_step+=0.05 | |
progress(progress_step,'unpacking pdf') | |
doc = UnstructuredPDFLoader(filename).load() | |
doc[0].metadata['source'] = filename.split('/')[-1] | |
split_docs = text_splitter.split_documents(doc) | |
progress_step+=0.3 | |
progress(progress_step,'docx unpacked') | |
return merge_split_docs_to_db(split_docs,db,progress,progress_step) | |
def merge_docx_to_db(filename,db,progress,progress_step=0.1): | |
progress_step+=0.05 | |
progress(progress_step,'unpacking docx') | |
doc = UnstructuredWordDocumentLoader(filename).load() | |
doc[0].metadata['source'] = filename.split('/')[-1] | |
split_docs = text_splitter.split_documents(doc) | |
progress_step+=0.3 | |
progress(progress_step,'docx unpacked') | |
return merge_split_docs_to_db(split_docs,db,progress,progress_step) | |
def merge_txt_to_db(filename,db,progress,progress_step=0.1): | |
progress_step+=0.05 | |
progress(progress_step,'unpacking txt') | |
with open(filename) as f: | |
docs = text_splitter.split_text(f.read()) | |
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs] | |
progress_step+=0.3 | |
progress(progress_step,'txt unpacked') | |
return merge_split_docs_to_db(split_docs,db,progress,progress_step) | |
def unpack_zip_file(filename,db,progress): | |
with ZipFile(filename, 'r') as zipObj: | |
contents = zipObj.namelist() | |
print(f"unpack zip: contents: {contents}") | |
tmp_directory = filename.split('/')[-1].split('.')[-2] | |
shutil.unpack_archive(filename, tmp_directory) | |
if 'index.faiss' in [item.lower() for item in contents]: | |
db2 = FAISS.load_local(tmp_directory, embeddings, allow_dangerous_deserialization=True) | |
db.merge_from(db2) | |
return db | |
for file in contents: | |
if file.lower().endswith('.docx'): | |
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress) | |
if file.lower().endswith('.pdf'): | |
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress) | |
if file.lower().endswith('.txt'): | |
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress) | |
return db | |
def add_files_to_zip(session_id): | |
zip_file_name = f"{session_id}.zip" | |
with ZipFile(zip_file_name, "w") as zipObj: | |
for root, dirs, files in os.walk(session_id): | |
for file_name in files: | |
file_path = os.path.join(root, file_name) | |
arcname = os.path.relpath(file_path, session_id) | |
zipObj.write(file_path, arcname) | |
#### UI Functions #### | |
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05): | |
if ui_session_id not in os.environ['users'].split(', '): | |
return "README.md", "" | |
print(files) | |
progress(progress_step,desc="Starting...") | |
split_docs=[] | |
if len(ui_session_id)==0: | |
ui_session_id = secrets.token_urlsafe(16) | |
session_id = f"PDFAISS-{ui_session_id}" | |
try: | |
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True) | |
except: | |
print(f"SESSION: {session_id} database does not exist, create a FAISS db") | |
db = FAISS.from_documents([foo], embeddings) | |
db.save_local(session_id) | |
print(f"SESSION: {session_id} database created") | |
print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id)) | |
for file_id,file in enumerate(files): | |
print("ID : ", file_id, "FILE : ", file) | |
file_type = file.name.split('.')[-1].lower() | |
source = file.name.split('/')[-1] | |
print(f"current file: {source}") | |
progress(file_id/len(files),desc=f"Treating {source}") | |
if file_type == 'pdf': | |
db2 = merge_pdf_to_db(file.name,db,progress) | |
if file_type == 'txt': | |
db2 = merge_txt_to_db(file.name,db,progress) | |
if file_type == 'docx': | |
db2 = merge_docx_to_db(file.name,db,progress) | |
if file_type == 'zip': | |
db2 = unpack_zip_file(file.name,db,progress) | |
if db2 != None: | |
db = db2 | |
db.save_local(session_id) | |
### move file to store ### | |
progress(progress_step, desc = 'moving file to store') | |
directory_path = f"{session_id}/store/" | |
if not os.path.exists(directory_path): | |
os.makedirs(directory_path) | |
try: | |
shutil.move(file.name, directory_path) | |
except: | |
pass | |
### load the updated db and zip it ### | |
progress(progress_step, desc = 'loading db') | |
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True) | |
print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id)) | |
progress(progress_step, desc = 'zipping db for download') | |
add_files_to_zip(session_id) | |
print(f"EMBEDDED: db zipped") | |
progress(progress_step, desc = 'db zipped') | |
return f"{session_id}.zip", ui_session_id, "" | |
def add_to_db(references,ui_session_id): | |
files = store_files(references) | |
return embed_files(files,ui_session_id) | |
def export_files(references): | |
files = store_files(references, ret_names=True) | |
#paths = [file.name for file in files] | |
return files | |
def display_docs(docs): | |
output_str = '' | |
for i, doc in enumerate(docs): | |
source = doc.metadata['source'].split('/')[-1] | |
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n*§*§*\n" | |
return output_str | |
# def display_docs_modal(docs): | |
# output_list = [] | |
# for i, doc in enumerate(docs): | |
# source = doc.metadata['source'].split('/')[-1] | |
# output_str.append(f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n*§*§*\n") | |
# return output_list | |
def hide_source(): | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
def ask_llm(system, user_input): | |
messages = [ | |
{ | |
"role": "system", | |
"content": system | |
}, | |
{ | |
"role": "user", | |
"content": user_input, | |
} | |
] | |
client = Groq(api_key=os.environ["GROQ_KEY"]) | |
chat_completion = client.chat.completions.create( | |
messages=messages, | |
model="llama3-70b-8192",#'mixtral-8x7b-32768', | |
) | |
return chat_completion.choices[0].message.content | |
def ask_llm_stream(system, user_input): | |
llm_response = "" | |
client = Groq(api_key=os.environ["GROQ_KEY"]) | |
if user_input is None or user_input == "": | |
user_input = "What is the introduction of the document about?" | |
messages = [ | |
{ | |
"role": "system", | |
"content": system | |
}, | |
{ | |
"role": "user", | |
"content": user_input, | |
} | |
] | |
stream = client.chat.completions.create( | |
messages=messages, | |
model="mixtral-8x7b-32768", | |
temperature=0.5, | |
max_tokens=1024, | |
top_p=1, | |
stop=None, | |
stream=True, | |
) | |
for chunk in stream: | |
llm_response += str(chunk.choices[0].delta.content) if chunk.choices[0].delta.content is not None else "" | |
yield llm_response | |
def ask_gpt(query, ui_session_id, history): | |
print(f"before: {os.environ['prompts']}") | |
os.environ['prompts'] += ', ' + query | |
print(f"after: {os.environ['prompts']}") | |
if ui_session_id not in os.environ['users'].split(', '): | |
return "Please Login", "", "" | |
session_id = f"PDFAISS-{ui_session_id}" | |
try: | |
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True) | |
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id)) | |
except: | |
print(f"SESSION: {session_id} database does not exist") | |
return f"SESSION: {session_id} database does not exist","","" | |
docs = db.similarity_search(query, k=4) | |
documents = "\n\n*-*-*-*-*-*\n\n".join(f"Content: {doc.page_content}\n" for doc in docs) | |
system = f"# Instructions\nTake a deep breath and resonate step by step.\nYou are a helpful standard assistant. Your have only one mission and that consists in answering to the user input based on the **provided documents**. If the answer to the question that is asked by the user isn't contained in the **provided documents**, say so but **don't make up an answer**. I chose you because you can say 'I don't know' so please don't do like the other LLMs and don't define acronyms that aren\'t present in the following **PROVIDED DOCUMENTS** double check if it is present before answering. If some of the information can be useful for the user you can tell him.\nFinish your response by **ONE** follow up question that the provided documents could answer.\n\nThe documents are separated by the string \'*-*-*-*-*-*\'. Do not provide any explanations or details.\n\n# **Provided documents**: {documents}." | |
gen = ask_llm_stream(system, query) | |
last_value="" | |
displayable_docs = display_docs(docs) | |
yn_display = len(docs)*[True]+(5-len(docs))*[False] | |
while True: | |
try: | |
last_value = next(gen) | |
yield last_value, displayable_docs, history + f"[query]\n{query}\n[answer]\n{last_value}\n[references]\n{displayable_docs}\n\n", gr.Button("Ref 1", visible=yn_display[0]), gr.Button("Ref 2", visible=yn_display[1]), gr.Button("Ref 3", visible=yn_display[2]), gr.Button("Ref 4", visible=yn_display[3]), gr.Button("Ref 5", visible=yn_display[4]) | |
except StopIteration as e: | |
break | |
history += f"[query]\n{query}\n[answer]\n{last_value}\n[references]\n{displayable_docs}\n\n" | |
return last_value, displayable_docs, history, gr.Button("Ref 1", visible=yn_display[0]), gr.Button("Ref 2", visible=yn_display[1]), gr.Button("Ref 3", visible=yn_display[2]), gr.Button("Ref 4", visible=yn_display[3]), gr.Button("Ref 5", visible=yn_display[4]) | |
def auth_user(ui_session_id): | |
if ui_session_id in os.environ['users'].split(', '): | |
return gr.Textbox(label='Username', visible=False), gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=True), gr.Button("Reset AI Knowledge", visible=True), gr.Markdown(label='AI Answer', visible=True), gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=True), gr.Button("▶", scale=1, visible=True), gr.Textbox(label='Sources', show_copy_button=True, visible=True), gr.File(label="Zipped database", visible=True), gr.Textbox(label='History', show_copy_button=True, visible=True) | |
else: | |
return gr.Textbox(label='Username', visible=True), gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=False), gr.Button("Reset AI Knowledge", visible=False), gr.Markdown(label='AI Answer', visible=False), gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=False), gr.Button("▶", scale=1, visible=False), gr.Textbox(label='Sources', show_copy_button=True, visible=False), gr.File(label="Zipped database", visible=False), gr.Textbox(label='History', show_copy_button=True, visible=False) | |
def display_info0(documents): | |
try: | |
return gr.Markdown(value=documents.split("\n*§*§*\n")[0], label='Source', visible=True), gr.Button('Hide', visible=True) | |
except Exception as e: | |
gr.Info("No Document") | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
def display_info1(documents): | |
try: | |
return gr.Markdown(value=documents.split("\n*§*§*\n")[1], label='Source', visible=True), gr.Button('Hide', visible=True) | |
except Exception as e: | |
gr.Info("No Document") | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
def display_info2(documents): | |
try: | |
return gr.Markdown(value=documents.split("\n*§*§*\n")[2], label='Source', visible=True), gr.Button('Hide', visible=True) | |
except Exception as e: | |
gr.Info("No Document") | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
def display_info3(documents): | |
try: | |
return gr.Markdown(value=documents.split("\n*§*§*\n")[3], label='Source', visible=True), gr.Button('Hide', visible=True) | |
except Exception as e: | |
gr.Info("No Document") | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
def display_info4(documents): | |
try: | |
return gr.Markdown(value=documents.split("\n*§*§*\n")[4], label='Source', visible=True), gr.Button('Hide', visible=True) | |
except Exception as e: | |
gr.Info("No Document") | |
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Enrich an LLM knowledge with your own documents 🧠🤖") | |
with gr.Column(): | |
tb_session_id = gr.Textbox(label='Username') | |
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=False) | |
btn_reset_db = gr.Button("Reset AI Knowledge", visible=False) | |
with gr.Column(): | |
answer_output = gr.Markdown(label='AI Answer', visible=False) | |
btn_hide_source = gr.Button('Hide', visible=False) | |
md_ref = gr.Markdown(label='Source', visible=False) | |
with gr.Row(): | |
query_input = gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=False) | |
btn_askGPT = gr.Button("▶", scale=1, visible=False) | |
with gr.Row(): | |
btn1 = gr.Button("Ref 1", visible=False) | |
btn2 = gr.Button("Ref 2", visible=False) | |
btn3 = gr.Button("Ref 3", visible=False) | |
btn4 = gr.Button("Ref 4", visible=False) | |
btn5 = gr.Button("Ref 5", visible=False) | |
tb_sources = gr.Textbox(label='Sources', show_copy_button=True, visible=False) | |
with gr.Accordion("Download your knowledge base and see your conversation history", open=False): | |
db_output = gr.File(label="Zipped database", visible=False) | |
tb_history = gr.Textbox(label='History', show_copy_button=True, visible=False, interactive=False) | |
tb_session_id.submit(auth_user, inputs=tb_session_id, outputs=[tb_session_id, docs_input, btn_reset_db, answer_output, query_input, btn_askGPT, tb_sources, db_output, tb_history]) | |
docs_input.upload(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id, query_input]) | |
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output]) | |
btn_askGPT.click(ask_gpt, inputs=[query_input, tb_session_id, tb_history], outputs=[answer_output, tb_sources, tb_history, btn1, btn2, btn3, btn4, btn5]) | |
query_input.submit(ask_gpt, inputs=[query_input, tb_session_id, tb_history], outputs=[answer_output, tb_sources, tb_history, btn1, btn2, btn3, btn4, btn5]) | |
btn1.click(display_info0, inputs=tb_sources, outputs=[md_ref, btn_hide_source]) | |
btn2.click(display_info1, inputs=tb_sources, outputs=[md_ref, btn_hide_source]) | |
btn3.click(display_info2, inputs=tb_sources, outputs=[md_ref, btn_hide_source]) | |
btn4.click(display_info3, inputs=tb_sources, outputs=[md_ref, btn_hide_source]) | |
btn5.click(display_info4, inputs=tb_sources, outputs=[md_ref, btn_hide_source]) | |
btn_hide_source.click(hide_source, inputs=None, outputs=[md_ref, btn_hide_source]) | |
demo.launch(debug=False,share=False) |