Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from typing import Dict | |
import gradio as gr | |
import pandas as pd | |
import json | |
from src.core import * | |
app = FastAPI( | |
title="Insight Finder", | |
description="Find relevant technologies from a problem", | |
) | |
class InputData(BaseModel): | |
problem: str | |
class InputConstraints(BaseModel): | |
constraints: Dict[str, str] | |
class OutputData(BaseModel): | |
technologies: list | |
async def process(data: InputData): | |
result = process_input(data, global_tech, global_tech_embeddings) | |
return {"technologies": result} | |
async def process_constraints(constraints: InputConstraints): | |
result = process_input_from_constraints(constraints, global_tech, global_tech_embeddings) | |
return {"technologies": result} | |
def process_input_gradio(problem_description: str): | |
""" | |
Processes the input problem description step-by-step for Gradio. | |
Returns all intermediate results. | |
""" | |
# Step 1: Set Prompt | |
prompt = set_prompt(problem_description) | |
# Step 2: Retrieve Constraints | |
constraints = retrieve_constraints(prompt) | |
# Step 3: Stem Constraints | |
constraints_stemmed = stem(constraints, "constraints") | |
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") | |
# Step 4: Global Tech (already loaded, just acknowledge) | |
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading | |
# Step 5: Get Contrastive Similarities | |
result_similarities, matrix = get_contrastive_similarities( | |
constraints_stemmed, global_tech_df, global_tech_embeddings_array | |
) | |
save_to_pickle(result_similarities) | |
# Step 6: Find Best List Combinations | |
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech_df, matrix) | |
# Step 7: Select Technologies | |
best_technologies_id = select_technologies(best_combinations) | |
# Step 8: Get Technologies by ID | |
best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df) | |
# Format outputs for Gradio | |
matrix_display = matrix.tolist() # Convert numpy array to list of lists for better Gradio display | |
result_similarities_display = { | |
k: ", ".join([f"{name} ({score:.3f})" for name, score in v]) | |
for k, v in result_similarities.items() | |
} | |
best_combinations_display = json.dumps(best_combinations, indent=2) | |
best_technologies_display = json.dumps(best_technologies, indent=2) | |
return ( | |
prompt, | |
", ".join(constraints), | |
", ".join(constraints_stemmed), | |
"Global technologies loaded and ready.", # Acknowledge tech loading | |
str(result_similarities_display), # Convert dict to string for display | |
pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech_df['name']), # Display matrix as DataFrame | |
best_combinations_display, | |
", ".join(map(str, best_technologies_id)), | |
best_technologies_display | |
) | |
# --- Gradio Interface Setup --- | |
# Define the input and output components | |
input_problem = gr.Textbox( | |
label="Enter Problem Description", | |
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." | |
) | |
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) | |
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) | |
output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False) | |
output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False) | |
output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False) | |
output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False) | |
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") | |
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) | |
output_final_technologies = gr.JSON(label="9. Final Best Technologies") | |
# Create the Gradio Blocks demo | |
with gr.Blocks() as gradio_app_blocks: | |
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") | |
gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.") | |
input_problem.render() | |
process_button = gr.Button("Process Problem") | |
with gr.Column(): | |
output_prompt.render() | |
output_constraints.render() | |
output_stemmed_constraints.render() | |
output_tech_loaded.render() | |
output_similarities.render() | |
output_matrix.render() | |
output_best_combinations.render() | |
output_selected_ids.render() | |
output_final_technologies.render() | |
process_button.click( | |
fn=process_input_gradio, | |
inputs=input_problem, | |
outputs=[ | |
output_prompt, | |
output_constraints, | |
output_stemmed_constraints, | |
output_tech_loaded, | |
output_similarities, | |
output_matrix, | |
output_best_combinations, | |
output_selected_ids, | |
output_final_technologies | |
] | |
) |