insight-finder / app.py
heymenn's picture
Update app.py
7aaac7c verified
raw
history blame
5.25 kB
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Dict
from src.core import *
app = FastAPI(
title="Insight Finder",
description="Find relevant technologies from a problem",
)
class InputData(BaseModel):
problem: str
class InputConstraints(BaseModel):
data: Dict[str, str]
class OutputData(BaseModel):
technologies: list
@app.post("/process", response_model=OutputData)
async def process(data: InputData):
result = process_input(data, global_tech, global_tech_embeddings)
return {"technologies": result}
@app.post("/process", response_model=OutputData)
async def process(constraints: InputConstraints):
result = process_input(constraints, global_tech, global_tech_embeddings)
return {"technologies": result}
def process_input_gradio(problem_description: str):
"""
Processes the input problem description step-by-step for Gradio.
Returns all intermediate results.
"""
# Step 1: Set Prompt
prompt = set_prompt(problem_description)
# Step 2: Retrieve Constraints
constraints = retrieve_constraints(prompt)
# Step 3: Stem Constraints
constraints_stemmed = stem(constraints, "constraints")
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx")
# Step 4: Global Tech (already loaded, just acknowledge)
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading
# Step 5: Get Contrastive Similarities
result_similarities, matrix = get_contrastive_similarities(
constraints_stemmed, global_tech_df, global_tech_embeddings_array
)
save_to_pickle(result_similarities)
# Step 6: Find Best List Combinations
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech_df, matrix)
# Step 7: Select Technologies
best_technologies_id = select_technologies(best_combinations)
# Step 8: Get Technologies by ID
best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df)
# Format outputs for Gradio
matrix_display = matrix.tolist() # Convert numpy array to list of lists for better Gradio display
result_similarities_display = {
k: ", ".join([f"{name} ({score:.3f})" for name, score in v])
for k, v in result_similarities.items()
}
best_combinations_display = json.dumps(best_combinations, indent=2)
best_technologies_display = json.dumps(best_technologies, indent=2)
return (
prompt,
", ".join(constraints),
", ".join(constraints_stemmed),
"Global technologies loaded and ready.", # Acknowledge tech loading
str(result_similarities_display), # Convert dict to string for display
pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech_df['name']), # Display matrix as DataFrame
best_combinations_display,
", ".join(map(str, best_technologies_id)),
best_technologies_display
)
# --- Gradio Interface Setup ---
# Define the input and output components
input_problem = gr.Textbox(
label="Enter Problem Description",
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics."
)
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False)
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False)
output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False)
output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False)
output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False)
output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False)
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found", interactive=False)
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
output_final_technologies = gr.JSON(label="9. Final Best Technologies", interactive=False)
# Create the Gradio Blocks demo
with gr.Blocks() as gradio_app_blocks:
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection")
gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.")
input_problem.render()
process_button = gr.Button("Process Problem")
with gr.Column():
output_prompt.render()
output_constraints.render()
output_stemmed_constraints.render()
output_tech_loaded.render()
output_similarities.render()
output_matrix.render()
output_best_combinations.render()
output_selected_ids.render()
output_final_technologies.render()
process_button.click(
fn=process_input_gradio,
inputs=input_problem,
outputs=[
output_prompt,
output_constraints,
output_stemmed_constraints,
output_tech_loaded,
output_similarities,
output_matrix,
output_best_combinations,
output_selected_ids,
output_final_technologies
]
)