heymenn commited on
Commit
7aaac7c
·
verified ·
1 Parent(s): 882d620

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -187
app.py CHANGED
@@ -29,170 +29,6 @@ async def process(constraints: InputConstraints):
29
  result = process_input(constraints, global_tech, global_tech_embeddings)
30
  return {"technologies": result}
31
 
32
- import gradio as gr
33
- import pandas as pd
34
- import numpy as np
35
- import random
36
- import json
37
-
38
- # --- Dummy Implementations for src.services.utils and src.services.processor ---
39
- # These functions simulate the behavior of your actual services for the Gradio interface.
40
-
41
- def load_technologies():
42
- """
43
- Dummy function to simulate loading technologies and their embeddings.
44
- Returns a sample DataFrame and a dummy numpy array for embeddings.
45
- """
46
- tech_data = {
47
- 'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
48
- 'name': [
49
- 'Machine Learning', 'Cloud Computing', 'Blockchain', 'Cybersecurity',
50
- 'Data Analytics', 'Artificial Intelligence', 'DevOps', 'Quantum Computing',
51
- 'Edge Computing', 'Robotics'
52
- ],
53
- 'description': [
54
- 'Algorithms for learning from data.', 'On-demand computing resources.',
55
- 'Decentralized ledger technology.', 'Protecting systems from threats.',
56
- 'Analyzing large datasets.', 'Simulating human intelligence.',
57
- 'Software development and operations.', 'Utilizing quantum mechanics.',
58
- 'Processing data near the source.', 'Automated machines.'
59
- ]
60
- }
61
- global_tech_df = pd.DataFrame(tech_data)
62
- # Simulate embeddings as random vectors
63
- global_tech_embeddings_array = np.random.rand(len(global_tech_df), 128)
64
- return global_tech_df, global_tech_embeddings_array
65
-
66
- def set_prompt(problem_description: str) -> str:
67
- """
68
- Dummy function to simulate prompt generation.
69
- """
70
- return f"Based on the problem: '{problem_description}', what are the key technical challenges and requirements?"
71
-
72
- def retrieve_constraints(prompt: str) -> list[str]:
73
- """
74
- Dummy function to simulate constraint retrieval.
75
- Returns a few sample constraints based on the prompt.
76
- """
77
- if "security" in prompt.lower() or "secure" in prompt.lower():
78
- return ["high security", "data privacy", "authentication"]
79
- elif "performance" in prompt.lower() or "speed" in prompt.lower():
80
- return ["low latency", "high throughput", "scalability"]
81
- elif "data" in prompt.lower() or "analyze" in prompt.lower():
82
- return ["data integration", "real-time analytics", "data storage"]
83
- return ["cost-efficiency", "ease of integration", "maintainability", "scalability"]
84
-
85
- def stem(text_list: list[str], type_of_text: str) -> list[str]:
86
- """
87
- Dummy function to simulate stemming.
88
- Simplistically removes 'ing', 's', 'es' from words.
89
- """
90
- stemmed_list = []
91
- for text in text_list:
92
- words = text.split()
93
- stemmed_words = []
94
- for word in words:
95
- word = word.lower()
96
- if word.endswith("ing"):
97
- word = word[:-3]
98
- elif word.endswith("es"):
99
- word = word[:-2]
100
- elif word.endswith("s"):
101
- word = word[:-1]
102
- stemmed_words.append(word)
103
- stemmed_list.append(" ".join(stemmed_words))
104
- return stemmed_list
105
-
106
- def save_dataframe(df: pd.DataFrame, filename: str):
107
- """
108
- Dummy function to simulate saving a DataFrame.
109
- """
110
- print(f"Simulating saving DataFrame to {filename}")
111
- # In a real scenario, you might save to Excel: df.to_excel(filename, index=False)
112
-
113
- def save_to_pickle(data):
114
- """
115
- Dummy function to simulate saving data to a pickle file.
116
- """
117
- print(f"Simulating saving data to pickle: {type(data)}")
118
-
119
- def get_contrastive_similarities(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, global_tech_embeddings: np.ndarray):
120
- """
121
- Dummy function to simulate getting contrastive similarities.
122
- Returns a dummy similarity matrix and result similarities.
123
- """
124
- num_constraints = len(constraints_stemmed)
125
- num_tech = len(global_tech_df)
126
-
127
- # Simulate a similarity matrix
128
- # Each row corresponds to a constraint, each column to a technology
129
- matrix = np.random.rand(num_constraints, num_tech)
130
- matrix = np.round(matrix, 3) # Round for better display
131
-
132
- # Simulate result_similarities (e.g., top 3 technologies for each constraint)
133
- result_similarities = {}
134
- for i, constraint in enumerate(constraints_stemmed):
135
- # Get top 3 tech indices for this constraint
136
- top_tech_indices = np.argsort(matrix[i])[::-1][:3]
137
- top_tech_names = [global_tech_df.iloc[idx]['name'] for idx in top_tech_indices]
138
- top_tech_scores = [matrix[i, idx] for idx in top_tech_indices]
139
- result_similarities[constraint] = list(zip(top_tech_names, top_tech_scores))
140
-
141
- return result_similarities, matrix
142
-
143
- def find_best_list_combinations(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, matrix: np.ndarray) -> list[dict]:
144
- """
145
- Dummy function to simulate finding best list combinations.
146
- Returns a few dummy combinations of technologies.
147
- """
148
- best_combinations = []
149
- # Simulate finding combinations that best cover constraints
150
- for i in range(min(3, len(constraints_stemmed))): # Create up to 3 dummy combinations
151
- combination = {
152
- "technologies": [],
153
- "score": round(random.uniform(0.7, 0.95), 2),
154
- "covered_constraints": []
155
- }
156
- num_tech_in_combo = random.randint(2, 4)
157
- selected_tech_ids = random.sample(global_tech_df['id'].tolist(), num_tech_in_combo)
158
- for tech_id in selected_tech_ids:
159
- tech_name = global_tech_df[global_tech_df['id'] == tech_id]['name'].iloc[0]
160
- combination["technologies"].append({"id": tech_id, "name": tech_name})
161
-
162
- # Assign some random constraints to be covered
163
- num_covered_constraints = random.randint(1, len(constraints_stemmed))
164
- combination["covered_constraints"] = random.sample(constraints_stemmed, num_covered_constraints)
165
-
166
- best_combinations.append(combination)
167
- return best_combinations
168
-
169
- def select_technologies(best_combinations: list[dict]) -> list[int]:
170
- """
171
- Dummy function to simulate selecting technologies based on best combinations.
172
- Returns a list of unique technology IDs.
173
- """
174
- selected_ids = set()
175
- for combo in best_combinations:
176
- for tech in combo["technologies"]:
177
- selected_ids.add(tech["id"])
178
- return list(selected_ids)
179
-
180
- def get_technologies_by_id(tech_ids: list[int], global_tech_df: pd.DataFrame) -> list[dict]:
181
- """
182
- Dummy function to simulate retrieving technology details by ID.
183
- """
184
- selected_technologies = []
185
- for tech_id in tech_ids:
186
- tech_info = global_tech_df[global_tech_df['id'] == tech_id]
187
- if not tech_info.empty:
188
- selected_technologies.append(tech_info.iloc[0].to_dict())
189
- return selected_technologies
190
-
191
- # --- Core Logic (Modified for Gradio Interface) ---
192
-
193
- # Load global technologies and embeddings once when the app starts
194
- global_tech_df, global_tech_embeddings_array = load_technologies()
195
-
196
  def process_input_gradio(problem_description: str):
197
  """
198
  Processes the input problem description step-by-step for Gradio.
@@ -227,10 +63,8 @@ def process_input_gradio(problem_description: str):
227
  best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df)
228
 
229
  # Format outputs for Gradio
230
- # Convert numpy array to list of lists for better Gradio display
231
- matrix_display = matrix.tolist()
232
 
233
- # Convert result_similarities to a more readable format for Gradio
234
  result_similarities_display = {
235
  k: ", ".join([f"{name} ({score:.3f})" for name, score in v])
236
  for k, v in result_similarities.items()
@@ -269,23 +103,36 @@ output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found"
269
  output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
270
  output_final_technologies = gr.JSON(label="9. Final Best Technologies", interactive=False)
271
 
272
-
273
- # Create the Gradio Interface
274
- gr.Interface(
275
- fn=process_input_gradio,
276
- inputs=input_problem,
277
- outputs=[
278
- output_prompt,
279
- output_constraints,
280
- output_stemmed_constraints,
281
- output_tech_loaded,
282
- output_similarities,
283
- output_matrix,
284
- output_best_combinations,
285
- output_selected_ids,
286
- output_final_technologies
287
- ],
288
- title="Insight Finder: Step-by-Step Technology Selection",
289
- description="Enter a problem description to see how relevant technologies are identified through various processing steps.",
290
- allow_flagging="never"
291
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  result = process_input(constraints, global_tech, global_tech_embeddings)
30
  return {"technologies": result}
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def process_input_gradio(problem_description: str):
33
  """
34
  Processes the input problem description step-by-step for Gradio.
 
63
  best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df)
64
 
65
  # Format outputs for Gradio
66
+ matrix_display = matrix.tolist() # Convert numpy array to list of lists for better Gradio display
 
67
 
 
68
  result_similarities_display = {
69
  k: ", ".join([f"{name} ({score:.3f})" for name, score in v])
70
  for k, v in result_similarities.items()
 
103
  output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
104
  output_final_technologies = gr.JSON(label="9. Final Best Technologies", interactive=False)
105
 
106
+ # Create the Gradio Blocks demo
107
+ with gr.Blocks() as gradio_app_blocks:
108
+ gr.Markdown("# Insight Finder: Step-by-Step Technology Selection")
109
+ gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.")
110
+ input_problem.render()
111
+ process_button = gr.Button("Process Problem")
112
+
113
+ with gr.Column():
114
+ output_prompt.render()
115
+ output_constraints.render()
116
+ output_stemmed_constraints.render()
117
+ output_tech_loaded.render()
118
+ output_similarities.render()
119
+ output_matrix.render()
120
+ output_best_combinations.render()
121
+ output_selected_ids.render()
122
+ output_final_technologies.render()
123
+
124
+ process_button.click(
125
+ fn=process_input_gradio,
126
+ inputs=input_problem,
127
+ outputs=[
128
+ output_prompt,
129
+ output_constraints,
130
+ output_stemmed_constraints,
131
+ output_tech_loaded,
132
+ output_similarities,
133
+ output_matrix,
134
+ output_best_combinations,
135
+ output_selected_ids,
136
+ output_final_technologies
137
+ ]
138
+ )